题目链接:https://www.luogu.org/problemnew/show/P1073
对于状态量相互影响的题目,分层图是个不错的想法。
考虑在题目中分为:
不交易:
直接从1到n出去,为0
交易:
先在某点买入,再从该点后所在路径上卖出。
买入卖出是两个操作,考虑可以分开在两张图上做,于是就有了分层图,共三张图。
我们把原图中的路径都设边权为0,表示在这条路上走对交易利润无影响,在第一张图上买入后,我们就走到下一张图,准备卖出操作。
设u—>v
所以若从u点买入,到下一条边的v,即v+n,边权为买入的花费,-val[u]。
这时我们再第二张图上的所走,就能保证是再走的路径是该点往后可以经过的路径。
这时我们再考虑转移卖出的情况。
此时已经在v+n—>w+n上
即若在v点卖出,往后可走到w点,所以是v+n到w+2n的一条边权为val[v]的路径。
图建好后,SPFA即可。
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 500010;
int n, m, val[maxn], dis[maxn];
bool vis[maxn];
struct edge{
int from, to, next, len;
}e[maxn<<2];
int head[maxn], cnt;
queue<int> q;
void add(int u, int v, int w)
{
e[++cnt].from = u;
e[cnt].len = w;
e[cnt].next = head[u];
e[cnt].to = v;
head[u] = cnt;
}
void SPFA()
{
while(!q.empty())
{
int now = q.front(); q.pop();
vis[now] = 0;
for(int i = head[now]; i != -1; i = e[i].next)
{
if(dis[e[i].to] < dis[now] + e[i].len)
{
dis[e[i].to] = dis[now] + e[i].len;
if(!vis[e[i].to])
{
q.push(e[i].to);
vis[e[i].to] = 1;
}
}
}
}
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%d%d",&n,&m);
for(int i = 1; i <= 3 * n + 1; i++)
dis[i] = -23333333;
for(int i = 1; i <= n; i++)
scanf("%d",&val[i]);
add(n, 3 * n + 1, 0);
add(3 * n, 3 * n + 1, 0);
for(int i = 1; i <= m; i++)
{
int u, v, w;
scanf("%d%d%d",&u,&v,&w);
if(w == 1)
{
add(u, v, 0);
add(u + n, v + n, 0);
add(u, v + n, -val[u]);
add(u + n * 2, v + n * 2, 0);
add(u + n, v + n * 2, val[u]);
}
else
{
add(u, v, 0);
add(u + n, v + n, 0);
add(u, v + n, -val[u]);
add(u + n * 2, v + n * 2, 0);
add(u + n, v + n * 2, val[u]);
add(v, u, 0);
add(v + n, u + n, 0);
add(v, u + n, -val[v]);
add(v + n * 2, u + n * 2, 0);
add(v + n, u + n * 2, val[v]);
}
}
q.push(1);
dis[1] = 0;
vis[1] = 1;
SPFA();
printf("%d\n",dis[3 * n + 1]);
return 0;
}
原文:https://www.cnblogs.com/MisakaAzusa/p/9688190.html