squeezenet是16年发布的一款轻量级网络模型,模型很小,只有4.8M,可用于移动设备,嵌入式设备。
关于squeezenet的原理可自行阅读论文或查找博客,这里主要解读下pytorch对squeezenet的官方实现。
地址:https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py
首先定义fire模块,这是squeezenet的核心所在,降低3X3卷积的数量。
class Fire(nn.Module): def __init__(self, inplanes, squeeze_planes, expand1x1_planes, expand3x3_planes): super(Fire, self).__init__() self.inplanes = inplanes self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)#定义压缩层,1X1卷积 self.squeeze_activation = nn.ReLU(inplace=True) self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,#定义扩展层,1X1卷积 kernel_size=1) self.expand1x1_activation = nn.ReLU(inplace=True) self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,#定义扩展层,3X3卷积 kernel_size=3, padding=1) self.expand3x3_activation = nn.ReLU(inplace=True) def forward(self, x): x = self.squeeze_activation(self.squeeze(x)) return torch.cat([ self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x)) ], 1)
可以看到首先定义压缩层与两个扩展层,压缩层用的是1X1卷积,扩展层是1X1卷积和3X3卷积的混合使用,网络inference的脉络是先经过压缩层,然后并行经过两个扩展层,最后将扩展层串联。
定义完核心模块,来看网络整体。
class SqueezeNet(nn.Module): def __init__(self, version=1.0, num_classes=1000): super(SqueezeNet, self).__init__() if version not in [1.0, 1.1]: raise ValueError("Unsupported SqueezeNet version {version}:" "1.0 or 1.1 expected".format(version=version)) self.num_classes = num_classes if version == 1.0: self.features = nn.Sequential( nn.Conv2d(3, 96, kernel_size=7, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(96, 16, 64, 64), Fire(128, 16, 64, 64), Fire(128, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 32, 128, 128), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(512, 64, 256, 256), ) else: self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(64, 16, 64, 64), Fire(128, 16, 64, 64), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(128, 32, 128, 128), Fire(256, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), Fire(512, 64, 256, 256), ) # Final convolution is initialized differently form the rest final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1) self.classifier = nn.Sequential( nn.Dropout(p=0.5), final_conv, nn.ReLU(inplace=True), nn.AvgPool2d(13, stride=1) ) for m in self.modules(): if isinstance(m, nn.Conv2d): if m is final_conv: init.normal_(m.weight, mean=0.0, std=0.01) else: init.kaiming_uniform_(m.weight) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x): x = self.features(x) x = self.classifier(x) return x.view(x.size(0), self.num_classes)
首先依然是定义网络层,在这里有两个版本,差别不大,都是fire模块的堆积,最后经过全局平均池化输出1000类。这里对卷积层采用了不同的初始化策略,我还没仔细研究过,就不说了。
原文:https://www.cnblogs.com/wzyuan/p/9710565.html