首页 > 其他 > 详细

Problem E CodeForces 237C

时间:2014-07-27 22:51:29      阅读:290      评论:0      收藏:0      [点我收藏+]

Description

You‘ve decided to carry out a survey in the theory of prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors.

Consider positive integers aa + 1, ..., b (a ≤ b). You want to find the minimum integer l (1 ≤ l ≤ b - a + 1) such that for any integerx (a ≤ x ≤ b - l + 1) among l integers xx + 1, ..., x + l - 1 there are at least k prime numbers.

Find and print the required minimum l. If no value l meets the described limitations, print -1.

Input

A single line contains three space-separated integers a, b, k (1 ≤ a, b, k ≤ 106a ≤ b).

Output

In a single line print a single integer — the required minimum l. If there‘s no solution, print -1.

Sample Input

Input
2 4 2
Output
3
Input
6 13 1
Output
4
Input
1 4 3
Output
-1

一边筛素数,一边处理出一个前缀和sum sum(i)表示[1,i]中有多少素数 那么我们每次查询区间[l,r]中有多少素数,直接查sum[r]-sum[l-1]就可以了 接下去我们按照题意,对答案L进行二分就可以了

 1 #include <iostream>
 2 using namespace std;
 3 
 4 const int maxn = 1000001;
 5 int sum[maxn],a,b,k;
 6 bool pri[maxn];
 7 void init(){
 8     for(int i = 2;i < maxn;i++){
 9         sum[i] = sum[i-1];
10         if(pri[i])  continue;
11         sum[i]++;
12         for(int j = i+i;j < maxn;j += i)
13             pri[j] = 1;
14     }
15 }
16 
17 bool check(int mid){
18     for(int i = a;i <= b-mid+1;i++){
19         if(sum[i+mid-1]-sum[i-1] < k) return 0;
20     }
21     return 1;
22 }
23 
24 int main(){
25     init();
26     cin.sync_with_stdio(false);
27     cin>>a>>b>>k;
28     if(sum[b]-sum[a-1] < k){
29         cout<<"-1"<<endl;
30         return 0;
31     }
32     int l = 1,r = b-a+1,ans;
33     while(l <= r){
34         int mid = (l+r)>>1;
35         if(check(mid))  ans = mid,r = mid-1;
36         else    l = mid+1;
37     }
38     cout<<ans<<endl;
39 }

 

Problem E CodeForces 237C,布布扣,bubuko.com

Problem E CodeForces 237C

原文:http://www.cnblogs.com/Run-dream/p/3871668.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!