import numpy as np
a = np.arange(15)
a = a.reshape(3, 5)
print(a.ndim, a.shape, a.dtype, a.size, a.itemsize)
# 2 (3, 5) int64 15 8
a = np.array([[1, 2, 3], [4, 5, 6]])
a = np.ones((3, 4))
a = np.zeros((3, 4), dtype=np.float32)
a = np.linspace(0, 2, 9) # 9 numbers from 0 to 2
a = np.array([[1, 2, 3], [4, 5, 6]]) # (2, 3)
b = np.array([[1, 0, 1], [0, 1, 1], [1, 1, 0]]) # (3, 3)
c = np.dot(a, b) # 矩阵相乘
d = a @ b # 矩阵相乘
e = np.dot(a[0], [0]) # 向量内积
f = a * a # 元素相乘
g = np.sum(a)
h = np.mean(a, axis=0)
a = np.zeros((2, 3))
b = np.zeros((3, 3))
np.vstack((a, b)).shape # (5, 3)
a = np.zeros((2, 1, 5))
b = np.zeros((2, 2, 5))
np.hstack((a, b)).shape # (2, 3, 5)
a = np.zeros((2, 5, 1))
b = np.zeros((2, 5, 5))
np.concatenate((a, b), axis=2).shape # (2, 5, 6)
a = np.zeros((3, ))
b = np.zeros((3, ))
np.stack((a, b), axis=0).shape # (2, 3)
np.stack((a, b), axis=1).shape # (3, 2)
a = np.random.rand(3, 2) # (3, 2)
a = np.random.random((2, 3)) # (2, 3)
a = np.random.randn(3, 2) # (3, 2)
a = sigma * np.random.randn(...) + mu
a = np.random.randint(1, 5, (3, 2)) # (3, 2)
np.random.choice(np.arange(5, 10), 3, replace=False)
np.random.choice(5, (3,2))
np.random.seed(1)
a = np.random.rand(3, 2)
np.random.seed(1)
b = np.random.rand(3, 2) # a == b
a = np.array([1, 2, 3, 4, 5])
np.random.shuffle(a)
获取更多精彩,请关注「seniusen」!
原文:https://www.cnblogs.com/seniusen/p/9734774.html