首页 > 其他 > 详细

机器学习

时间:2018-10-01 22:32:29      阅读:185      评论:0      收藏:0      [点我收藏+]

1. 用于执行分类,回归,聚类和密度估计的机器学习方法:

   a. 监督学习的用途: 

k-近邻算法 线性回归
朴素贝叶斯算法 局部加权线性回归
支持向量机 Ride回归
决策树 lasso最小回归系数估计

 

 

   b. 无监督学习的用途:

K-均值 最大期望算法
DBSCAN Parzen窗设计

2. 选择合适的算法:

   如果是想要预测目标变量的值,则可以选择监督学习算法,否则选择无监督学习算法。

   确定监督学习算法之后,进一步确定目标变量类型,如果目标变量是离散型,如1/2/3,A/B/C,是/否等,则旋转1分类算法;如果目标变量是连续型的数值,如0.01~~100.00,-999~~999,则选择回归算法。

   确定无监督学习算法,进一步分析是否要将数据划分为离散的组,如果只是唯一的需求,则使用聚类算法;如果还需要估计数据与每个分组的相似程度,则需要使用密度估计算法。

3. 开发机器学习应用程序的步骤:

  •    收集数据
  •    准备输入数据
  •    分析输入数据
  •    训练算法
  •    预测算法
  •    使用算法

 

机器学习

原文:https://www.cnblogs.com/chengchengaqin/p/9735915.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!