首页 > 编程语言 > 详细

k-近邻算法

时间:2018-10-01 23:02:49      阅读:173      评论:0      收藏:0      [点我收藏+]

1. k-近邻算法采用测量不同特征值之间的距离方法进行分类

   优点:精度高、对异常值不敏感、无数据输入假定

   缺点:计算复杂度高、空间复杂度高

   适用数据类型:数值型和标称行

   存在一个样本数据集合,称作为训练样本集。并且样本集中每个数据都存在标签(每一数据与所属分类的对应关系)。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。

2. 流程:

  •    收集数据
  •    准备数据
  •    分析数据
  •    训练算法
  •    测试算法
  •    使用算法

3. 

k-近邻算法

原文:https://www.cnblogs.com/chengchengaqin/p/9735998.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!