首页 > 其他 > 详细

[EOJ Monthly 2018.10][C. 痛苦的 01 矩阵]

时间:2018-10-02 23:14:03      阅读:160      评论:0      收藏:0      [点我收藏+]

题目链接:C. 痛苦的 01 矩阵

题目大意:原题说的很清楚了,不需要简化_(:з」∠)_

题解:设\(r_i\)为第\(i\)行中0的个数,\(c_j\)为第\(j\)列中0的个数,\(f_{i,j}\)代表对应格子是否为0,则有\(cost(i,j)=r_i+c_j-f_{i,j}\),\((cost(i,j))^2=r_i^2+c_j^2+f_{i,j}+2r_ic_j-2f_{i,j}(r_i+c_j)\)

$$\sum_{i=1}^n \sum_{j=1}^n \left( cost(i,j) \right)^2 = \sum_{i=1}^n (r_i^2+c_i^2)+\sum_{i=1}^n \sum_{j=1}^nf_{i,j}+2(\sum_{i=1}^nr_i)(\sum_{j=1}^nc_j)-2f_{i,j}\sum_{i=1}^n \sum_{j=1}^n(r_i+c_j)$$

   初始状态下,\(ans=n^2*(2n-1)^2, r_i=c_i=n\),给出\(k\)个为1的方格可以看做进行\(k\)次反转操作,之后把式子中的每一项一一对应地进行修改就好了

技术分享图片
#include<bits/stdc++.h>
using namespace std;
#define N 200001
#define LL long long
#define MOD 1000000007
LL n,k,q,x,y,u,v,r[N],sr[N],c[N],sc[N],ans;
set<LL>s;
void add(LL x,LL y)
{
    s.insert(x*N+y);
    r[x]--,c[y]--;
    ans+=MOD-n*(2ll*r[x]+1)%MOD,ans%=MOD;
    ans+=MOD-n*(2ll*c[y]+1)%MOD,ans%=MOD;
    ans+=MOD-1,ans%=MOD;
    ans+=2ll*(MOD-sc[n]+MOD-sr[n]+1),ans%=MOD;
    ans+=2ll*(r[x]+1+c[y]+1)%MOD,ans%=MOD;
    ans+=2ll*r[x]%MOD+2ll*c[y]%MOD,ans%=MOD;
    sc[n]--,sr[n]--;
}
void del(LL x,LL y)
{
    sc[n]++,sr[n]++;
    ans+=MOD-(2ll*r[x]%MOD+2ll*c[y]%MOD)%MOD,ans%=MOD;
    ans+=MOD-(2ll*(r[x]+1+c[y]+1)%MOD)%MOD,ans%=MOD;
    ans+=2ll*(sc[n]+sr[n]-1)%MOD,ans%=MOD;
    ans++,ans%=MOD;
    ans+=n*(2ll*c[y]+1)%MOD,ans%=MOD;
    ans+=n*(2ll*r[x]+1)%MOD,ans%=MOD;
    r[x]++,c[y]++;
    s.erase(x*N+y);
}
int main()
{
    scanf("%lld%lld%lld",&n,&k,&q);
    for(LL i=1;i<=n;i++)
      {
      r[i]=c[i]=n;
      sr[i]=(sr[i-1]+r[i])%MOD;
      sc[i]=(sc[i-1]+c[i])%MOD;
      }
    ans=4ll*n*n-4ll*n+1,ans%=MOD;
    ans*=n*n%MOD,ans%=MOD;
    for(LL i=1;i<=k;i++)
      scanf("%lld%lld",&x,&y),add(x,y);
    printf("%lld\n",ans);
    for(LL i=1;i<=q;i++)
      {
      scanf("%lld%lld",&u,&v);
      if(s.count(u*N+v))del(u,v);
      else add(u,v);
      printf("%lld\n",ans);
      }
    return 0;
}
View Code

 

[EOJ Monthly 2018.10][C. 痛苦的 01 矩阵]

原文:https://www.cnblogs.com/DeaphetS/p/9738696.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!