首页 > 其他 > 详细

区间dp

时间:2018-10-02 23:49:43      阅读:288      评论:0      收藏:0      [点我收藏+]

概念

所谓区间dp,顾名思义就是在一段区间上的动态规划。它既要满足dp问题的最优子结构和无后效性外,还应该符合在区间上操作的特点。我的理解是往往会对区间进行合并操作。抑或是单个元素(可看成一个小区间)跨区间进行操作。例如括号匹配问题,石子合并问题(通过多次的相邻合并,最后实质上会产生跨区间的合并,如果你把其中的石子看作参考系的话就很容易感觉出来),还有在整数中插入运算符号的问题(利用运算符的优先级以及交换律可看出)

这样以来,如果我们要得知一个大区间的情况,由于它必定是由从多个长度不一的小区间转移而来(转移情况未知),我们可以通过求得多个小区间的情况,从而合并信息,得到大区间。

对于一个长度为n的区间,确定它的子区间需要首尾两个指针,显然子区间数量级为n2,那区间dp的复杂度也就为n2

 

模板

for (int len = 1; len < n; len++) { //操作区间的长度
        for (int i = 0, j = len; j <= n; i++, j++) { //始末
            //检查是否匹配(非必须)
            for (int s = i; s < j; s++) {
                //update
            }
        }
    }

 

经典实例

1、石子问题

有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。

#include <cstdio>
#define min(x, y) (x > y ? y : x)
#define INF 0x3f3f3f3f
using namespace std;

const int maxn = 210;
int dp[maxn][maxn];
int sum[maxn];
int a[maxn];

int main(int argc, const char * argv[]) {
    
    int n;
    while (~scanf("%d", &n)) {
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
            sum[i] = sum[i - 1] + a[i];
        }
        for (int len = 1; len < n; len++) { //操作区间的长度
            for (int i = 1, j = len + 1; j <= n; i++, j++) { //始末
                //检查是否匹配(非必须)
                dp[i][j] = INF;
                for (int s = i; s < j; s++) {
                    dp[i][j] = min(dp[i][j], dp[i][s] + dp[s + 1][j] + sum[j] - sum[i - 1]);
                }
            }
        }
        printf("%d\n", dp[1][n]);
    }
    return 0;
}

2、括号匹配

题目大意:给一个括号序列,问序列中合法的括号最多有多少个,若A合法,则[A],(A)均合法,若A,B合法则AB也合法
题目分析:和POJ 1141那道经典括号匹配类似,这题更简单一些,想办法把问题转化,既然要求最大的括号匹配数,我们考虑加最少的括号,使得整个序列合法,这样就转变成1141那题,开下脑动类比二分图最大匹配的性质,最大匹配+最大独立集=点数,显然要加入最少的点使序列合法,则加的最少的点数即为|最大独立集|,我们要求的是原序列的|最大匹配|,以上纯属yy,下面给出转移方程,和1141一模一样
dp[i][i] = 1;
然后枚举区间长度
1)外围匹配:dp[i][j] = dp[i + 1][j - 1];
2)外围不匹配,枚举分割点:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]); (i <= k < j)

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

const int maxn = 105;
char str[maxn];
int dp[maxn][maxn];

bool ck(int i, int j) {
    if ((str[i] == ( && str[j] == )) || (str[i] == [ && str[j] == ])) {
        return true;
    } else {
        return false;
    }
}

int main(int argc, const char * argv[]) {
    while (~scanf("%s", str)) {
        if (str[0] == e) break;
        
        int len;
        len = strlen(str);
        memset(dp, 0, sizeof(dp));
        for (int l = 1; l < len; l++) {  //len =  j - i 为当前区间长度
            for (int i = 0, j = l; j < len; i++, j++) { // i++, j++
                if (ck(i, j)) { // 匹配
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                }
                // 讨论区间合并情况,求最大值
                for (int pos = i; pos < j; pos++) {
                    dp[i][j] = max(dp[i][j], dp[i][pos] + dp[pos + 1][j]);
                }
            }
        }
        printf("%d\n", dp[0][len - 1]);
        
    }
    return 0;
}

 

区间dp

原文:https://www.cnblogs.com/lxqiaoyixuan/p/9738748.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!