Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
For example, given
inorder = [9,3,15,20,7] postorder = [9,15,7,20,3]
Return the following binary tree:
3 / 9 20 / 15 7
Java:
public TreeNode buildTreePostIn(int[] inorder, int[] postorder) { if (inorder == null || postorder == null || inorder.length != postorder.length) return null; HashMap<Integer, Integer> hm = new HashMap<Integer,Integer>(); for (int i=0;i<inorder.length;++i) hm.put(inorder[i], i); return buildTreePostIn(inorder, 0, inorder.length-1, postorder, 0, postorder.length-1,hm); } private TreeNode buildTreePostIn(int[] inorder, int is, int ie, int[] postorder, int ps, int pe, HashMap<Integer,Integer> hm){ if (ps>pe || is>ie) return null; TreeNode root = new TreeNode(postorder[pe]); int ri = hm.get(postorder[pe]); TreeNode leftchild = buildTreePostIn(inorder, is, ri-1, postorder, ps, ps+ri-is-1, hm); TreeNode rightchild = buildTreePostIn(inorder,ri+1, ie, postorder, ps+ri-is, pe-1, hm); root.left = leftchild; root.right = rightchild; return root; }
Python:
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: # @param inorder, a list of integers # @param postorder, a list of integers # @return a tree node def buildTree(self, inorder, postorder): lookup = {} for i, num in enumerate(inorder): lookup[num] = i return self.buildTreeRecu(lookup, postorder, inorder, len(postorder), 0, len(inorder)) def buildTreeRecu(self, lookup, postorder, inorder, post_end, in_start, in_end): if in_start == in_end: return None node = TreeNode(postorder[post_end - 1]) i = lookup[postorder[post_end - 1]] node.left = self.buildTreeRecu(lookup, postorder, inorder, post_end - 1 - (in_end - i - 1), in_start, i) node.right = self.buildTreeRecu(lookup, postorder, inorder, post_end - 1, i + 1, in_end) return node if __name__ == "__main__": inorder = [2, 1, 3] postorder = [2, 3, 1] result = Solution().buildTree(inorder, postorder) print(result.val) print(result.left.val) print(result.right.val)
C++:
// Time: O(n) // Space: O(n) /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { unordered_map<int, size_t> in_entry_idx_map; for (size_t i = 0; i < inorder.size(); ++i) { in_entry_idx_map.emplace(inorder[i], i); } return ReconstructPreInOrdersHelper(preorder, 0, preorder.size(), inorder, 0, inorder.size(), in_entry_idx_map); } // Reconstructs the binary tree from pre[pre_s : pre_e - 1] and // in[in_s : in_e - 1]. TreeNode *ReconstructPreInOrdersHelper(const vector<int>& preorder, size_t pre_s, size_t pre_e, const vector<int>& inorder, size_t in_s, size_t in_e, const unordered_map<int, size_t>& in_entry_idx_map) { if (pre_s == pre_e || in_s == in_e) { return nullptr; } auto idx = in_entry_idx_map.at(preorder[pre_s]); auto left_tree_size = idx - in_s; auto node = new TreeNode(preorder[pre_s]); node->left = ReconstructPreInOrdersHelper(preorder, pre_s + 1, pre_s + 1 + left_tree_size, inorder, in_s, idx, in_entry_idx_map); node->right = ReconstructPreInOrdersHelper(preorder, pre_s + 1 + left_tree_size, pre_e, inorder, idx + 1, in_e, in_entry_idx_map); return node; } };
类似题目:
[LeetCode] 105. Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树
[LeetCode] 106. Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树
原文:https://www.cnblogs.com/lightwindy/p/9739076.html