AKAZE是KAZE的加速版
特征点查找和绘制:把surf中的surf改成KAZE或AKAZE即可
1 #include <opencv2/opencv.hpp> 2 #include <opencv2/xfeatures2d.hpp> 3 #include <iostream> 4 5 using namespace cv; 6 using namespace cv::xfeatures2d; 7 using namespace std; 8 9 int main(int argc, char** argv) { 10 Mat src = imread("test.jpg", IMREAD_GRAYSCALE); 11 if (src.empty()) { 12 printf("could not load image...\n"); 13 return -1; 14 } 15 namedWindow("input image", CV_WINDOW_AUTOSIZE); 16 imshow("input image", src); 17 18 // AKAZE特征点检测 19 Ptr<AKAZE> detector = AKAZE::create();//创建一个AKAZE类对象并初始化 20 vector<KeyPoint> keypoints; 21 detector->detect(src, keypoints, Mat());//找出关键点 22 23 // 绘制关键点 24 Mat keypoint_img; 25 drawKeypoints(src, keypoints, keypoint_img, Scalar::all(-1), DrawMatchesFlags::DEFAULT); 26 imshow("KeyPoints Image", keypoint_img); 27 28 waitKey(0); 29 return 0; 30 }
匹配:
1 #include <opencv2/opencv.hpp> 2 #include <iostream> 3 #include <math.h> 4 5 using namespace cv; 6 using namespace std; 7 8 int main(int argc, char** argv) { 9 Mat img1 = imread("fire_5.jpg", IMREAD_GRAYSCALE); 10 Mat img2 = imread("数字.jpg", IMREAD_GRAYSCALE); 11 if (img1.empty() || img2.empty()) { 12 printf("could not load images...\n"); 13 return -1; 14 } 15 imshow("box image", img1); 16 imshow("scene image", img2); 17 18 19 // extract akaze features 20 Ptr<AKAZE> detector = AKAZE::create(); 21 vector<KeyPoint> keypoints_obj; 22 vector<KeyPoint> keypoints_scene; 23 Mat descriptor_obj, descriptor_scene; 24 detector->detectAndCompute(img1, Mat(), keypoints_obj, descriptor_obj); 25 detector->detectAndCompute(img2, Mat(), keypoints_scene, descriptor_scene); 26 27 28 // matching 29 FlannBasedMatcher matcher(new flann::LshIndexParams(20, 10, 2)); 30 //FlannBasedMatcher matcher; 31 vector<DMatch> matches; 32 matcher.match(descriptor_obj, descriptor_scene, matches); 33 34 // draw matches(key points) 35 Mat akazeMatchesImg; 36 /* 37 drawMatches(img1, keypoints_obj, img2, keypoints_scene, matches, akazeMatchesImg); 38 imshow("akaze match result", akazeMatchesImg);*/ 39 40 vector<DMatch> goodMatches; 41 double minDist = 100000, maxDist = 0; 42 for (int i = 0; i < descriptor_obj.rows; i++) { 43 double dist = matches[i].distance; 44 if (dist < minDist) { 45 minDist = dist; 46 } 47 if (dist > maxDist) { 48 maxDist = dist; 49 } 50 } 51 printf("min distance : %f", minDist); 52 53 for (int i = 0; i < descriptor_obj.rows; i++) { 54 double dist = matches[i].distance; 55 if (dist < max( 1.5*minDist, 0.02)) { 56 goodMatches.push_back(matches[i]); 57 } 58 } 59 60 drawMatches(img1, keypoints_obj, img2, keypoints_scene, goodMatches, akazeMatchesImg, Scalar::all(-1), 61 Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); 62 imshow("good match result", akazeMatchesImg); 63 64 waitKey(0); 65 return 0; 66 }
OpenCV——KAZE、AKAZE特征检测、匹配与对象查找
原文:https://www.cnblogs.com/long5683/p/9740156.html