首页 > 其他 > 详细

Given a matrix, get the number of path from the top left cell to the top right cell.

时间:2018-10-04 08:17:21      阅读:158      评论:0      收藏:0      [点我收藏+]

 

 

Given a matrix, get the number of path from the top left cell to the top right cell.

Note that: you can only go right, up right, down right.

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(2,0)

(2,1)

(2,2)

(2,3)

(2,4)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)


sol1: DFS

(0,0)

9

/ur |r \dr

(-1,1) (0,1) (1,1)

 0                     4 5

   /ur |r \dr /ur |r \dr

(-1,2)   (0,2) (1,2) (0,2) (1,2) (2,2)

 0                   2   2 2                        2 1

   / |     \     / |      \         /      | \          / | \           / |  \

(-1,3)(0,3)(1,3)   (0,3)(1,3)(2,3)   (-1,3)(0,3)(1,3)   (0,3)(1,3)(2,3)    (1,3)(2,3)(3,3)

  0    1 1         1 1 0     0 1 1 1       1 0 1 0 0

         / | \ / | \    / | \   / | \ / | \              / | \ / | \ / | \ / | \  / | \ / | \ / | \ / | \

                  010 100    010 100000           010 100    010   100 000  100 000 00 0

Each node is a sub problem: the number of path from the cell (x,y) to (0,4)

branching factor: 3

base case: (x,y) out of bound, / y = col - 1

Time: O(3^n * 1)

Space: O(n)  n = col


sol2: DFS + memorization

We can notice that, some sub problem, ie. the node with the same cell pair, is calculated multiple times.

So when we calculate it the first time, we memorize the result of this sub problem.

memo[i][j]  the number of path from (i,j) to (0,4)

(0,0) (3,4)  4*5

Time: O(col* row * 1)

Space:O(col)  + O(col*row)



  public int DFSwithMemo(int x, int y, int row, int col, int[][] memo) {
       if (x < 0 || x > row - 1 || y < 0 || y > col - 1) {
           return 0;
       }
       if (x == 0 && y == col - 1) {
           return 1;
       }
       if (y == col - 1) {
           return 0;
       }
       if (memo[x][y] >= 0) {
           return memo[x][y];
       }
       int upRight = DFSwithMemo(x - 1, y + 1, row, col, memo);
       int right = DFSwithMemo(x, y + 1, row, col, memo);
       int downRight = DFSwithMemo(x + 1, y + 1, row, col, memo);
       memo[x][y] = upRight + right + downRight;
       return upRight + right + downRight;
   }



sol3: DP

dp定义: dp[i][j] the number of path from (i,j) to (0,4)

induction rule: dp[i][j] = dp[i-1][j+1] + dp[i][j+1]+dp[i+1][j+1]

base case: dp[0][4] = 1, dp[i][4] = 0 i != 0

i < 0 || i > row - 1 || y < 0 || y> col - 1 dp[i][j] =  0

result: dp[0][0]

Space:O(row*col)

从右向左

2   4

2   4

1  3

0  1

O(row * 2)

 









 4*5     0

x  x 2  1 1

x x  x 1 0

x x  x 0 0

x x  x 0 0


2     0

2

1

0

x  x 2  1 1

x x  x 1 0

x x  x 0 0

x x  x 0 0



(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(2,0)

(2,1)

(2,2)

(2,3)

(2,4)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)


dp定义: dp[i][j] the number of path from (0,0) to (i,j)

induction rule: dp[i][j] = dp[i-1][j-1] + dp[i][j-1]+dp[i+1][j-1]

base case: dp[0][0] = 1, dp[i][0] = 0 i != 0

i < 0 || i > row - 1 || y < 0 || y> col - 1 dp[i][j] =  0

result: dp[0][4]

Time: O(col * row * 1)

Space:O(col * row)




""

 

 

 

 

 

Follow up 1: What if you are required to go below the line







(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(2,0)

(2,1)

(2,2)

(2,3)

(2,4)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)

 

Follow up 2: What if you are required to use the cell (1,1)

Follow up 3: What if there are some blocked cell

Given a matrix, get the number of path from the top left cell to the top right cell.

原文:https://www.cnblogs.com/tobeabetterpig/p/9741349.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!