对于数值数据,pandas使用浮点值NaN(Not a Number)表示缺失数据。我们称其为哨兵值。
过滤掉缺失数据的办法有很多种。你可以通过pandas.isnull或布尔索引的手工方法,但dropna可能会更实用一些。对于一个Series,dropna返回一个仅含非空数据和索引值的Series:
In [15]: from numpy import nan as NA In [16]: data = pd.Series([1, NA, 3.5, NA, 7]) In [17]: data.dropna() Out[17]: 0 1.0 2 3.5 4 7.0 dtype: float64
通过一个常数调用fillna就会将缺失值替换为那个常数值:
In [27]: df = pd.DataFrame(np.random.randn(7, 3)) In [28]: df.iloc[:4, 1] = NA In [29]: df.iloc[:2, 2] = NA In [30]: df Out[30]: 0 1 2 0 -0.204708 NaN NaN 1 -0.555730 NaN NaN 2 0.092908 NaN 0.769023 3 1.246435 NaN -1.296221 4 0.274992 0.228913 1.352917 5 0.886429 -2.001637 -0.371843 6 1.669025 -0.438570 -0.539741 In [33]: df.fillna(0) Out[33]: 0 1 2 0 -0.204708 0.000000 0.000000 1 -0.555730 0.000000 0.000000 2 0.092908 0.000000 0.769023 3 1.246435 0.000000 -1.296221 4 0.274992 0.228913 1.352917 5 0.886429 -2.001637 -0.371843 6 1.669025 -0.438570 -0.539741
通过一个字典调用fillna,就可以实现对不同的列填充不同的值
In [34]: df.fillna({1: 0.5, 2: 0}) Out[34]: 0 1 2 0 -0.204708 0.500000 0.000000 1 -0.555730 0.500000 0.000000 2 0.092908 0.500000 0.769023 3 1.246435 0.500000 -1.296221 4 0.274992 0.228913 1.352917 5 0.886429 -2.001637 -0.371843 6 1.669025 -0.438570 -0.539741
In [45]: data = pd.DataFrame({‘k1‘: [‘one‘, ‘two‘] * 3 + [‘two‘], ....: ‘k2‘: [1, 1, 2, 3, 3, 4, 4]}) In [46]: data Out[46]: k1 k2 0 one 1 1 two 1 2 one 2 3 two 3 4 one 3 5 two 4 6 two 4
DataFrame的duplicated方法返回一个布尔型Series,表示各行是否是重复行(前面出现过的行)
In [47]: data.duplicated() Out[47]: 0 False 1 False 2 False 3 False 4 False 5 False 6 True dtype: bool
原文:https://www.cnblogs.com/helloluo/p/9751609.html