题目链接:hdu 4885 TIANKENG’s travel
题目大意:给定N,L,表示有N个加油站,每次加满油可以移动距离L,必须走直线,但是可以为斜线。然后给出sx,sy,ex,ey,以及N个加油站的位置,问说最少经过几个加油站,路过不加油也算。
解题思路:一开始以为经过可以不算,所以o(n2)的复杂度建图,然后用bfs求最短距离,结果被FST了。
将点按照x坐标排序,这样在建图是保证当前点为最左点,每次建立一条边的时候,将该边的斜率记录,下次有相同的斜率则不加边,斜率可以用两个整数表示,但是要注意化简成最简。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int maxn = 1005;
struct point {
int id;
ll x, y;
}p[maxn], s, e;
ll L;
int N, d[maxn];
vector<int> g[maxn];
set<pii> vis;
inline ll gcd (ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
inline bool cmp (const point& a, const point& b) {
return a.x < b.x;
}
inline ll dis (ll x, ll y) {
return x * x + y * y;
}
bool search (ll x, ll y) {
ll d = gcd(x, y);
if (d < 0)
d = -d;
x /= d; y /= d;
if (vis.find(make_pair(x, y)) != vis.end())
return true;
vis.insert(make_pair(x, y));
return false;
}
void addEdge (point a, point b) {
ll d = dis(a.x - b.x, a.y - b.y);
if (d <= L && !search(b.x - a.x, b.y - a.y)) {
g[a.id].push_back(b.id);
g[b.id].push_back(a.id);
//printf("%d %d %lld %lld\n", a.id, b.id, d, L * L);
}
}
void init () {
scanf("%d%lld", &N, &L);
scanf("%lld%lld%lld%lld", &p[0].x, &p[0].y, &p[1].x, &p[1].y);
p[0].id = 0;
p[1].id = 1;
N += 2;
L = L * L;
for (int i = 0; i < N; i++)
g[i].clear();
for (int i = 2; i < N; i++) {
scanf("%lld%lld", &p[i].x, &p[i].y);
p[i].id = i;
}
sort(p, p + N, cmp);
for (int i = 0; i < N; i++) {
vis.clear();
for (int j = i + 1; j < N; j++)
addEdge(p[i], p[j]);
}
}
void bfs () {
queue<int> que;
que.push(0);
memset(d, -1, sizeof(d));
d[0] = 0;
while (!que.empty()) {
int u = que.front();
que.pop();
if (u == 1) {
printf("%d\n", d[u]-1);
return;
}
for (int i = 0; i < g[u].size(); i++) {
int v = g[u][i];
if (d[v] == -1) {
d[v] = d[u] + 1;
que.push(v);
}
}
}
printf("impossible\n");
}
int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
init();
bfs();
}
return 0;
}
hdu 4885 TIANKENG’s travel(bfs),布布扣,bubuko.com
hdu 4885 TIANKENG’s travel(bfs)
原文:http://blog.csdn.net/keshuai19940722/article/details/38229515