首页 > 其他 > 详细

水了两道括号匹配

时间:2014-07-29 11:20:16      阅读:428      评论:0      收藏:0      [点我收藏+]

POJ 1141

给一段括号序列,要求增加最少的括号,使之合法,输出序列。

dp[i][j]表示使给定序列的i到j成为合法序列所需添加的最少括号数,dp[0][length-1]即是答案,转移的话,如果s[i]和s[j]可以匹配那么dp[i][j] = dp[i+1][j-1],否则就考虑在中间选择一个位置m,使分割成的两个序列各自成为合法序列。方案的话就是多开一个数组记录然后递归输出。状态是从长度小的序列转移到长度长的序列,所以两层循环,外层枚举长度,内层枚举头位置即可。写成记忆化搜索简单一点,就是稍微慢些。

代码有点磨叽。

  1 #include<cstdio>
  2 #include<cstring>
  3 #include<algorithm>
  4 using namespace std;
  5 
  6 
  7 char s[200];
  8 char mat[300];
  9 int d[200][200], g[200][200];
 10 bool pre[300], nex[300];
 11 bool match(int a, int b, char s[])
 12 {
 13     if (s[a] == ( && s[b] == )) return true;
 14     if (s[a] == { && s[b] == }) return true;
 15     if (s[a] == [ && s[b] == ]) return true;
 16     return false;
 17 }
 18 void output(int l, int r)
 19 {
 20     if (l > r) return;
 21     if (g[l][r] == 0){
 22         printf("%c", s[l]);
 23         output(l+1, r-1);
 24         printf("%c", s[r]);
 25     }
 26     else if (g[l][r] == -1){
 27         if (pre[s[l]])
 28             printf("%c%c", s[l], mat[s[l]]);
 29         else
 30             printf("%c%c", mat[s[l]], s[l]);
 31         output(l+1, r);
 32     }
 33     else if (g[l][r] == -2){
 34         output(l, r-1);
 35         if (pre[s[r]])
 36             printf("%c%c", s[r], mat[s[r]]);
 37         else
 38             printf("%c%c", mat[s[r]], s[r]);
 39     }
 40     else if (g[l][r] == -3){
 41         printf("%c%c", s[l], s[r]);
 42     }
 43     else{
 44         output(l, g[l][r]);
 45         output(g[l][r]+1, r);
 46     }
 47 }
 48 int main()
 49 {
 50     memset(pre, false, sizeof(pre));
 51     memset(nex, false, sizeof(nex));
 52     pre[(] = 1; pre[{] = 1; pre[[] = 1;
 53     nex[)] = 1; nex[}] = 1; nex[]] = 1;
 54     mat[(] = ); mat[)] = (;
 55     mat[{] = }; mat[}] = {;
 56     mat[[] = ]; mat[]] = [;
 57     while(gets(s))
 58     {
 59         memset(d, 127, sizeof(d));
 60         int len = strlen(s);
 61         for (int i = 0; i < len; i++){
 62             d[i][i] = 1;
 63             g[i][i] = -1;
 64         }
 65         for (int i = 0; i < len-1; i++)
 66             if (match(i, i+1, s)){
 67                 d[i][i+1] = 0;
 68                 g[i][i+1] = -3;
 69             }
 70         for (int k = 1; k < len; k++)
 71             for (int i = 0; i < len; i++){
 72                 int j = i + k;
 73                 if (j >= len) break;
 74                 int tmp = d[i+1][j-1];// + 2 * (1 - match(i, j, s));
 75                 if (match(i, j, s) && tmp < d[i][j]){
 76                     d[i][j] = tmp;
 77                     g[i][j] = 0;
 78                 }
 79                 tmp = d[i+1][j]+1;
 80                 if (tmp < d[i][j]){
 81                     d[i][j] = tmp;
 82                     g[i][j] = -1;
 83                 }
 84                 tmp = d[i][j-1]+1;
 85                 if (tmp < d[i][j]){
 86                     d[i][j] = tmp;
 87                     g[i][j] = -2; 
 88                 }
 89                 for (int m = i; m < j; m++){
 90                     tmp = d[i][m] + d[m+1][j];
 91                     if (tmp < d[i][j]){
 92                         d[i][j] = tmp;
 93                         g[i][j] = m;
 94                     }
 95                 }
 96             }
 97 //        for (int i = 0; i < len; i++)
 98 //            for (int j = i; j < len; j++)
 99 //                printf("%d %d %d\n", i, j, d[i][j]);
100     //    printf("%d\n", d[0][len-1]);    
101         output(0, len-1);
102         printf("\n");
103     }
104     return 0;
105 }

 

TC SRM 628 DIV 2 500 Points

给一段括号序列,其中还有不超过5个通配符,问是否合法。

因为通配符不超过5个,所以可以直接枚举其可能(6的5次方),然后用栈来判断,如果是前括号则压入栈,如果是后括号则和栈顶匹配,可以弹出栈顶,否则矛盾退出。或者也是和上题一样的dp思路,最后看如果最少增加括号为0,即是合法。

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #include<string>
 5 using namespace std;
 6 
 7 int d[200][200];
 8 bool match(int a, int b, string s)
 9 {
10     if (s[a] == X)
11         if (s[b] == } || s[b] == ) || s[b] == ] || s[b] == X) return true;
12     if (s[b] == X)
13         if (s[a] == ( || s[a] == { || s[a] == [ || s[a] == X) return true;
14     if (s[a] == ( && s[b] == )) return true;
15     if (s[a] == { && s[b] == }) return true;
16     if (s[a] == [ && s[b] == ]) return true;
17     return false;
18 }
19 
20 class BracketExpressions{
21 public:
22     string ifPossible(string s)
23     {    
24         int len = s.length();
25         for (int i = 0; i < len; i++)
26             d[i][i] = 1;
27         for (int i = 0; i < len-1; i++) if (match(i, i+1, s))
28             d[i][i+1] = 0;
29         for (int k = 1; k < len; k++)
30             for (int i = 0; i < len; i++){
31                 int j = i + k;
32                 if (j >= len) break;
33                 d[i][j] = 214748360;
34                 if (match(i, j, s))
35                     d[i][j] = d[i+1][j-1];
36                 for (int m = i; m < j; m++)
37                     d[i][j] = min(d[i][j], d[i][m] + d[m+1][j]);
38             }
39         if (d[0][len-1] == 0) return "possible";
40         else return "impossible";
41     }
42 }

 

水了两道括号匹配,布布扣,bubuko.com

水了两道括号匹配

原文:http://www.cnblogs.com/james47/p/3874119.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!