题目链接:https://www.nowcoder.com/acm/contest/203/I?tdsourcetag=s_pcqq_aiomsg
来源:牛客网
思路:我们用用fa[i]表示距离i最近的大都市,dis[i]表示i距离该大都市的距离。我们先把所有大都市加入初始点,然后跑Dijkstra,如果某一点到另一个大都市距离更近,那么更新dis和fa。如果取边时,边的两边分别属于不同的两个大都市,说明两个大都市连通了,那么更新答案。
代码:
#include<set> #include<map> #include<stack> #include<cmath> #include<queue> #include<vector> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> typedef long long ll; const int maxn = 200000 + 10; const int seed = 131; const ll MOD = 1e9 + 7; const ll INF = 1e17; using namespace std; struct Edge{ int to, next; ll w; }edge[maxn << 1]; struct qnode{ int u; ll c; qnode(int _u = 0, ll _c = 0):u(_u), c(_c){} bool operator < (const qnode &r) const{ return r.c < c; } }; int n, m, p, tot, head[maxn], big[maxn], fa[maxn], id[maxn]; ll dis[maxn], ans[maxn]; void addEdge(int u, int v, ll w){ edge[tot].to = v; edge[tot].w = w; edge[tot].next = head[u]; head[u] = tot++; } void Dijkstra(){ memset(fa, -1, sizeof(fa)); for(int i = 0; i <= n; i++) dis[i] = INF; for(int i = 0; i < p; i++) ans[i] = INF; priority_queue<qnode> que; while(!que.empty()) que.pop(); for(int i = 0; i < p; i++){ dis[big[i]] = 0; fa[big[i]] = big[i]; que.push(qnode(big[i], 0)); } qnode temp; while(!que.empty()){ temp = que.top(); que.pop(); int u = temp.u; for(int i = head[u]; i != -1; i = edge[i].next){ int v = edge[i].to; ll w = edge[i].w; if(dis[v] > dis[u] + w){ dis[v] = dis[u] + w; fa[v] = fa[u]; que.push(qnode(v, dis[v])); } else if(fa[u] != fa[v] && fa[v] != -1){ ans[id[fa[u]]] = min(ans[id[fa[u]]], dis[u] + dis[v] + w); ans[id[fa[v]]] = min(ans[id[fa[v]]], dis[u] + dis[v] + w); } } } } int main(){ int u, v; ll w; scanf("%d%d%d", &n, &m, &p); memset(head, -1, sizeof(head)); tot = 0; for(int i = 0; i < p; i++){ scanf("%d", &u); big[i] = u; id[u] = i; } for(int i = 0; i < m; i++){ scanf("%d%d%lld", &u, &v, &w); addEdge(u, v, w); addEdge(v, u, w); } Dijkstra(); for(int i = 0; i < p; i++){ if(i != 0) printf(" "); printf("%lld", ans[i]); } printf("\n"); return 0; }
Newcoder Metropolis(多源最短路 + Dijkstra堆优化)题解
原文:https://www.cnblogs.com/KirinSB/p/9813958.html