首页 > 其他 > 详细

HADOOP学习笔记(四):HBase

时间:2018-10-19 23:29:34      阅读:292      评论:0      收藏:0      [点我收藏+]

HBase简介

Hbase是分布式、面向列的开源数据库(其实准确的说是面向列族)。HDFS为Hbase提供可靠的底层数据存储服务,MapReduce为Hbase提供高性能的计算能力,Zookeeper为Hbase提供稳定服务和Failover机制,因此我们说Hbase是一个通过大量廉价的机器解决海量数据的高速存储和读取的分布式数据库解决方案。

HBase 要点

① 它介于 NoSQL 和 RDBMS 之间,仅能通过主键(rowkey)和主键的 range 来检索数据

② HBase 查询数据功能很简单,不支持 join 等复杂操作

③ 不支持复杂的事务,只支持行级事务(可通过 hive 支持来实现多表 join 等复杂操作)。

④ HBase 中支持的数据类型:byte[](底层所有数据的存储都是字节数组)

⑤ 主要用来存储结构化和半结构化的松散数据。

逻辑存储模型

技术分享图片

Rowkey

Rowkey的概念和mysql中的主键是完全一样的,Hbase使用Rowkey来唯一的区分某一行的数据。

由于Hbase只支持3中查询方式:

1、基于Rowkey的单行查询

2、基于Rowkey的范围扫描

3、全表扫描

rowkey 行键可以是任意字符串(最大长度是 64KB,实际应用中长度一般为 10-100bytes),最好是 16。在 HBase 内部,rowkey 保存为字节数组。HBase 会对表中的数据按照 rowkey 排序 (字典顺序)

Column的概念

列,可理解成MySQL列。

ColumnFamily的概念

列族, 包含一个或多个列,必须在表创建的时候指定 ,官方推荐的是列族最好小于或者等于3。我们使用的场景一般是1个列族。

TimeStamp的概念

TimeStamp对Hbase来说至关重要,因为它是实现Hbase多版本的关键。在Hbase中使用不同的timestame来标识相同rowkey行对应的不通版本的数据。

HBase 中通过 rowkey 和 columns 确定的为一个存储单元称为 cell。每个 cell 都保存着同一份 数据的多个版本。版本通过时间戳来索引。时间戳的类型是 64 位整型。时间戳可以由 hbase(在数据写入时自动)赋值,此时时间戳是精确到毫秒的当前系统时间。时间戳也可以由 客户显式赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。 每个 cell 中,不同版本的数据按照时间

倒序排序,即最新的数据排在最前面。

为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担,hbase 提供了两种数据版 本回收方式:
  保存数据的最后 n 个版本
  保存最近一段时间内的版本(设置数据的生命周期 TTL)。
用户可以针对每个列簇进行设置。

单元格(Cell)

由{rowkey, column( = + ), version} 唯一确定的单元。 Cell 中的数据是没有类型的,全部是字节码形式存贮。

物理存储模型

Table在行的方向上分割为多个HRegion,每个HRegion分散在不同的RegionServer中。

 每个HRegion由多个Store构成,每个Store由一个MemStore和0或多个StoreFile组成,每个Store保存一个Columns Family。

 StoreFile以HFile格式存储在HDFS中

技术分享图片

技术分享图片

存储架构

技术分享图片

从HBase的架构图上可以看出,HBase中的组件包括Client、Zookeeper、HMaster、HRegionServer、HRegion、Store、MemStore、StoreFile、HFile、HLog等,接下来介绍他们的作用。

Client 

 1、HBase 有两张特殊表:

.META.:记录了用户所有表拆分出来的的 Region 映射信息,.META.可以有多个 Regoin

-ROOT-:记录了.META.表的 Region 信息,-ROOT-只有一个 Region,无论如何不会分裂

2、Client 访问用户数据前需要首先访问 ZooKeeper,找到-ROOT-表的 Region 所在的位置,然 后访问-ROOT-表,接着访问.META.表,最后才能找到用户数据的位置去访问,中间需要多次 网络操作,不过 client 端会做 cache 缓存。

ZooKeeper 

 1、ZooKeeper 为 HBase 提供 Failover 机制,选举 Master,避免单点 Master 单点故障问题

 2、存储所有 Region 的寻址入口:-ROOT-表在哪台服务器上。-ROOT-这张表的位置信息

 3、实时监控 RegionServer 的状态,将 RegionServer 的上线和下线信息实时通知给 Master

 4、存储 HBase 的 Schema,包括有哪些 Table,每个 Table 有哪些 Column Family

Master 

1、为 RegionServer 分配 Region

2、负责 RegionServer 的负载均衡

3、发现失效的 RegionServer 并重新分配其上的 Region

4、HDFS 上的垃圾文件(HBase)回收

5、处理 Schema 更新请求(表的创建,删除,修改,列簇的增加等等)

RegionServer 

1、RegionServer 维护 Master 分配给它的 Region,处理对这些 Region 的 IO 请求

2、RegionServer 负责 Split 在运行过程中变得过大的 Region,负责 Compact 操作

可以看到,client 访问 HBase 上数据的过程并不需要 master 参与(寻址访问 zookeeper 和 RegioneServer,数据读写访问 RegioneServer),Master 仅仅维护者 Table 和 Region 的元数据信息,负载很低。

.META. 存的是所有的 Region 的位置信息,那么 RegioneServer 当中 Region 在进行分裂之后 的新产生的 Region,是由 Master 来决定发到哪个 RegioneServer,这就意味着,只有 Master 知道 new Region 的位置信息,所以,由 Master 来管理.META.这个表当中的数据的 CRUD

所以结合以上两点表明,在没有 Region 分裂的情况,Master 宕机一段时间是可以忍受的。

HRegion

table在行的方向上分隔为多个Region。Region是HBase中分布式存储和负载均衡的最小单元,即不同的region可以分别在不同的Region Server上,但同一个Region是不会拆分到多个server上。
Region按大小分隔,每个表一般是只有一个region。随着数据不断插入表,region不断增大,当region的某个列族达到一个阈值时就会分成两个新的region。
每个region由以下信息标识:< 表名,startRowkey,创建时间>
由目录表(-ROOT-和.META.)记录该region的endRowkey

Store

每一个region由一个或多个store组成,至少是一个store,hbase会把一起访问的数据放在一个store里面,即为每个 ColumnFamily建一个store,如果有几个ColumnFamily,也就有几个Store。一个Store由一个memStore和0或者 多个StoreFile组成。 HBase以store的大小来判断是否需要切分region

MemStore

memStore 是放在内存里的。保存修改的数据即keyValues。当memStore的大小达到一个阀值(默认128MB)时,memStore会被flush到文 件,即生成一个快照。目前hbase 会有一个线程来负责memStore的flush操作。

StoreFile

memStore内存中的数据写到文件后就是StoreFile,StoreFile底层是以HFile的格式保存。

HFile

 HBase中KeyValue数据的存储格式,HFile是Hadoop的 二进制格式文件,实际上StoreFile就是对Hfile做了轻量级包装,即StoreFile底层就是HFile

 HLog

HLog(WAL log):WAL意为write ahead log,用来做灾难恢复使用,HLog记录数据的所有变更,一旦region server 宕机,就可以从log中进行恢复。
HLog文件就是一个普通的Hadoop Sequence File, Sequence File的value是key时HLogKey对象,其中记录了写入数据的归属信息,除了table和region名字外,还同时包括sequence number和timestamp,timestamp是写入时间,sequence number的起始值为0,或者是最近一次存入文件系统中的sequence number。 Sequence File的value是HBase的KeyValue对象,即对应HFile中的KeyValue。

HADOOP学习笔记(四):HBase

原文:https://www.cnblogs.com/lullaby/p/9819667.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!