首页 > 其他 > 详细

模型评估【PR|ROC|AUC】

时间:2018-10-19 23:29:50      阅读:353      评论:0      收藏:0      [点我收藏+]

这里主要讲的是对分类模型的评估。

1、准确率(Accuracy)

    准确率的定义是:【分类正确的样本】 / 【总样本个数】,其中分类正确的样本是不分正负样本的

    优点:简单粗暴

    缺点:当正负样本分布不均衡的情况(假设一种极端情况,正样本1个,负样本99个),此时即使一个比较差的模型(只会将所用的样本预测成负样本),那它也有99%的准确率。

             总结一下就是 当样本分布不均匀,该指标意义不大

    改进方案: 1、在不同样本分类下求它的准确率,然后取平均值

                    2、选取其他评价指标

2、PR曲线

    Precision(精准率):【分类正确的正样本个数】/【被预测为正样本的个数】

    Recall(召回率):【分类正确的正样本个数】/【真实中正样本的个数】

    Precision 与 Recall是一对既矛盾又统一的变量

    矛盾是指:如果想要高的 精准率,也就要求模型要非常强,强到 预测为正样本的样本 全部都是正确的,此时Precision=1,而

    统一是指:

 

模型评估【PR|ROC|AUC】

原文:https://www.cnblogs.com/zhaopAC/p/9819661.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!