首页 > 其他 > 详细

线性求逆元推导

时间:2018-10-20 15:20:12      阅读:104      评论:0      收藏:0      [点我收藏+]

本篇介绍线性求逆元的推导过程


·对于一个质数\(P\),我们需要求出\(1-N\)\(mod\ P\)意义下的逆元,如何使用线性的方法求其逆元呢?

·首先,我们设\(t=P/i,k=P%i\);

·对于\(i*t+k≡0 \pmod{P}\),我们可以做出如下推导:

·等式两边同时除以\(i*k\),我们可以得到新式子\(\frac{t}{k}+\frac{1}{i}≡0 \pmod{P}\);

·从而得到:\(\frac{P}{i}*inv[P\%i]+inv[i]≡0 \pmod{P}\);

·最后得到\(inv[i]=(-\frac{P}{i}+P)*inv[P\%i]%P\);

\(code:\)

#include<stdio.h>
#include<algorithm>
#define ll long long
using namespace std;

const int maxn=(1e7*2)+2;
ll n,p,inv[maxn];
inline ll add(ll a,ll b){return a+b<p?a+b:a+b-p;}
inline ll mul(ll a,ll b){return a*b<p?a*b:a*b%p;}

int main()
{
    scanf("%lld%lld",&n,&p);inv[1]=1;
    for(int i=2;i<=n;i++) inv[i]=mul(add(-p/i,p),inv[p%i]);
}

线性求逆元推导

原文:https://www.cnblogs.com/KatouKatou/p/9821642.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!