首页 > 其他 > 详细

Spark快速获得CrossValidator的最佳模型参数

时间:2018-10-21 23:59:18      阅读:308      评论:0      收藏:0      [点我收藏+]

Spark提供了便利的Pipeline模型,可以轻松的创建自己的学习模型。

但是大部分模型都是需要提供参数的,如果不提供就是默认参数,那么怎么选择参数就是一个比较常见的问题。Spark提供在org.apache.spark.ml.tuning包下提供了模型选择器,可以替换参数然后比较模型输出。

目前有CrossValidator和TrainValidationSplit两种,比如一个文本情感预测模型。

Pipeline只有三步,第一步切词,第二步HashingTF,第三步NB分类

Pipeline pipeline = new Pipeline()
                .setStages(new PipelineStage[]{tokenizer, hashingTF, naiveBayes});

ParamMap[] paramMaps = new ParamGridBuilder()
                .addGrid(hashingTF.numFeatures(), new int[]{10000, 100000, 500000, 1000000})
                .build();
CrossValidator cv = new CrossValidator()
                .setEstimator(pipeline)
                .setEvaluator(new BinaryClassificationEvaluator())
                .setEstimatorParamMaps(paramMaps);

其中HashingTF的参数选择非常重要,我们这里就随便尝试几种,然后放在CrossValidator中去。

最后我们会获得一个CrossValidatorModel类,这里有两种选择。

第一种是自己手动获取其中的参数,因为bestModel的参数就是我们最后选择的参数

Pipeline bestPipeline = (Pipeline) model.bestModel().parent();
PipelineStage stage = bestPipeline.getStages()[1];
stage.extractParamMap().get(stage.getParam("numFeatures"));

这种方法可以获得值,但是需要根据你模型情况修改获取的位置。

如果你只是想知道最佳参数是多少,并不是需要在上下文中使用,那还有一个更简单的方法。

修改log4j的配置,添加

log4j.logger.org.apache.spark.ml.tuning.TrainValidationSplit=INFO
log4j.logger.org.apache.spark.ml.tuning.CrossValidator=INFO

效果如下:

技术分享图片

 

Spark快速获得CrossValidator的最佳模型参数

原文:https://www.cnblogs.com/itboys/p/9827567.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!