A.ZOJ3726 Alice‘s Print Service
题解 here
这道题在HDU上要用I64d 在ZOJ上要用lld
几何题,分几种情况:和大圆相离、和大圆相交和小圆相离、和大圆相交小圆也相交。
还有一种情况需要考虑,它飞的方向远离圆则永远不相交。
借用土豪的神模板
#include<cstring> #include<string> #include<fstream> #include<iostream> #include<iomanip> #include<cstdio> #include<cctype> #include<algorithm> #include<queue> #include<map> #include<set> #include<vector> #include<stack> #include<ctime> #include<cstdlib> #include<functional> #include<cmath> using namespace std; #define PI acos(-1.0) #define MAXN 1010 #define eps 1e-8 #define INF 0x7FFFFFFF #define long long ll; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 struct point { double x,y; }; double xmult(point p1,point p2,point p0) { return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } double Distance(point p1,point p2) { return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)); } double disptoline(point p,point l1,point l2) { return fabs(xmult(p,l1,l2))/Distance(l1,l2); } point intersection(point u1,point u2,point v1,point v2) { point ret=u1; double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x)) /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x)); ret.x+=(u2.x-u1.x)*t; ret.y+=(u2.y-u1.y)*t; return ret; } //判直线和圆相交,包括相切 int intersect_line_circle(point c,double r,point l1,point l2) { if(disptoline(c,l1,l2)-r>-eps) { return 0; } else { return 1; } } //判线段和圆相交,包括端点和相切 int intersect_seg_circle(point c,double r,point l1,point l2) { double t1=Distance(c,l1)-r,t2=Distance(c,l2)-r; point t=c; if (t1<eps||t2<eps) { return t1>-eps||t2>-eps; } t.x+=l1.y-l2.y; t.y+=l2.x-l1.x; return xmult(l1,c,t)*xmult(l2,c,t)<eps&&disptoline(c,l1,l2)-r<eps; } //判圆和圆相交,包括相切 int intersect_circle_circle(point c1,double r1,point c2,double r2) { return Distance(c1,c2)<r1+r2+eps&&Distance(c1,c2)>fabs(r1-r2)-eps; } //计算圆上到点p最近点,如p与圆心重合,返回p本身 point dot_to_circle(point c,double r,point p) { point u,v; if (Distance(p,c)<eps) { return p; } u.x=c.x+r*fabs(c.x-p.x)/Distance(c,p); u.y=c.y+r*fabs(c.y-p.y)/Distance(c,p)*((c.x-p.x)*(c.y-p.y)<0?-1:1); v.x=c.x-r*fabs(c.x-p.x)/Distance(c,p); v.y=c.y-r*fabs(c.y-p.y)/Distance(c,p)*((c.x-p.x)*(c.y-p.y)<0?-1:1); return Distance(u,p)<Distance(v,p)?u:v; } //计算直线与圆的交点,保证直线与圆有交点 //计算线段与圆的交点可用这个函数后判点是否在线段上 void intersection_line_circle(point c,double r,point l1,point l2,point& p1,point& p2) { point p=c; double t; p.x+=l1.y-l2.y; p.y+=l2.x-l1.x; p=intersection(p,c,l1,l2); t=sqrt(r*r-Distance(p,c)*Distance(p,c))/Distance(l1,l2); p1.x=p.x+(l2.x-l1.x)*t; p1.y=p.y+(l2.y-l1.y)*t; p2.x=p.x-(l2.x-l1.x)*t; p2.y=p.y-(l2.y-l1.y)*t; } //计算圆与圆的交点,保证圆与圆有交点,圆心不重合 void intersection_circle_circle(point c1,double r1,point c2,double r2,point& p1,point& p2) { point u,v; double t; t=(1+(r1*r1-r2*r2)/Distance(c1,c2)/Distance(c1,c2))/2; u.x=c1.x+(c2.x-c1.x)*t; u.y=c1.y+(c2.y-c1.y)*t; v.x=u.x+c1.y-c2.y; v.y=u.y-c1.x+c2.x; intersection_line_circle(c1,r1,u,v,p1,p2); } int main () { double Rm,R,r,x,y,vx,vy; while(~scanf("%lf %lf %lf %lf %lf %lf %lf",&Rm,&R,&r,&x,&y,&vx,&vy)) { point O; O.x=0; O.y=0; point P; P.x=x; P.y=y; point Pd; Pd.x=x+vx/10; Pd.y=y+vy/10; point p1,p2,p3,p4; if(Distance(O,P)<Distance(O,Pd)) { printf("0\n"); continue; } if(intersect_line_circle(O,R+r,P,Pd)==0) { printf("0\n"); //与大圆相离 continue; } else if(intersect_line_circle(O,Rm+r,P,Pd)==0) { //与小圆相离 intersection_line_circle(O,R+r,P,Pd,p1,p2); if(p1.x!=p2.x) { printf("%.3lf\n",fabs((p1.x-p2.x)/vx)); } else { printf("%.3lf\n",fabs((p1.y-p2.y)/vy)); } } else { intersection_line_circle(O,R +r,P,Pd,p1,p2); intersection_line_circle(O,Rm+r,P,Pd,p3,p4); if(p1.x!=p2.x) { printf("%.3lf\n",2*fabs((max(p1.x,p2.x)-max(p3.x,p4.x))/vx)); } else { printf("%.3lf\n",2*fabs((max(p1.y,p2.y)-max(p3.y,p4.y))/vy)); } } } } /* 5 20 1 0 100 0 -1 5 20 1 30 15 -1 0 5 20 1 0 21 1 0 */
感觉就是个简单的搜索,但是hdu、uva上都没有人过,目前uva上唯一的那一发submission是我华丽的WA,杭电上十几发submission一半是我交的。。。。zoj上有两个人过,我没过,而且还是坏习惯一直dfs在写迷宫,没T,WA成了狗。我的想法是用lw数组来存放每行最右端的W,用rl数组存放每行最左端的L,初始lw赋比0小,rl赋比m大,从第一行lw和rl之间开始枚举dfs,每一行把max(lw,0)当左边界,min(rl,m)当右边界,感觉还是挺简单的题。。。但是还是没AC
G.ZOJ3732 Graph Reconstruction
我之前刚好做过一个一样的题,点击这里,还是Havel-Hakimi定理,这题唯一的区别就是如果有多种可能就输出两组结果。我YY了一下,每次第二大的度数开始减一,减到最后一个数时将这个度和它的下一个度比较(如果存在的话),如果它们度一样,说明存在多组解,然后再用Havel-Hakimi定理扫一遍,第一回排序对度一样的情况按id从大到小排序,第二回对度一样的情况按id从小到大排序,这样就能产生两组解了,网上还有交换的方法, 不过交换起来相应的边都要改变,时间上都要进行两遍Havel-Hakimi扫描,我觉得我的方法更好想一些,不过缺点是我的方法只能找到两种解,如果题目需要输出三种解还是要用交换的方法。不过。。。可能我写的太挫,至今WA成狗
dp[i][j]: 和前i个队伍交战后所选队伍是j的最高胜率
状态转移方程:
dp[i][j] = max(dp[i][j],dp[i-1][j]*P[j][no[i]]); //代表不换
dp[i][no[i]] = max(dp[i][no[i]],dp[i-1][j]*P[j][no[i]]);//代表换战队
#include<cstring> #include<string> #include<fstream> #include<iostream> #include<iomanip> #include<cstdio> #include<cctype> #include<algorithm> #include<queue> #include<map> #include<set> #include<vector> #include<stack> #include<ctime> #include<cstdlib> #include<functional> #include<cmath> using namespace std; #define PI acos(-1.0) #define MAXN 1010 #define eps 1e-11 #define INF 0x7FFFFFFF #define long long ll; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 double a[150][150]; double dp[10010][150]; int r[10010]; int main(){ int n,m,i,j; while(scanf("%d",&n)!=EOF){ n = n*(n-1)*(n-2)/6; for(i=0;i<n;i++){ for(j=0;j<n;j++){ scanf("%lf",&a[i][j]); } } scanf("%d",&m); for(i=0;i<n;i++){ dp[0][i] = 1; for(j=1;j<=m;j++) dp[j][i] = 0; } for(i=1;i<=m;i++){ scanf("%d",&r[i]); } for(i=1;i<=m;i++){ for(j=0;j<n;j++){ dp[i][j]=max(dp[i][j],dp[i-1][j]*a[j][r[i]]); dp[i][r[i]]=max(dp[i][r[i]],dp[i-1][j]*a[j][r[i]]); } } double ans = 0; for(i=0;i<n;i++){ if(dp[m][i]>ans) ans = dp[m][i]; } printf("%.6lf\n",ans); } return 0; }
CUGBACM_Summer_Tranning3,布布扣,bubuko.com
原文:http://blog.csdn.net/zzzz40/article/details/38237773