首页 > 其他 > 详细

bezier插值绕过打结问题

时间:2018-10-24 19:46:11      阅读:138      评论:0      收藏:0      [点我收藏+]
html5 canvas bezierCurveTo涉及4个点:o(开始点),cp1(控制点1),cp2(控制点2),p(结束点)
技术分享图片
当 o到p的走向(向量op)和cp1到cp2的走向(向量c12)相反时,就会出现打结的情况,我采取降级处理的方法,即发现会打结时,改为使用lineTo:

                p = parts[i][j];
                var o = parts[i][j-1]; //p前面一点
                var cp1 = cps[2*(j-1)];
                var cp2 = cps[2*j-1];
                var op = p.subtract(o),c12=cp2.subtract(cp1);
                //绕过打结问题
                if(op.x*c12.x+op.y*c12.y>0) //控制点走向和折线走向一致
                    ctx.bezierCurveTo(cp1.x,cp1.y, cp2.x,cp2.y, p.x, p.y);
                else
                    ctx.lineTo(p.x,p.y);

向量夹角公式:

cosθ=向量a×向量b/|向量a|×|向量b| = (x1x2+y1y2)/[√(x12+y12)√(x22+y22)]

我将两向量夹角大于90度判定为两向量反向,
当180>θ>90时cosθ<0,夹角公式分母总为正,所以只要判定分子的正负即可。


过特征点平滑效果,可参考:
https://blog.csdn.net/u011284073/article/details/81385922

控制点的计算过程可以参考 http://turfjs.org/docs#bezierSpline 的源码,中点连线平移得到控制点,其使用的方法即:https://blog.csdn.net/ch_soft/article/details/7401582

bezier插值绕过打结问题

原文:http://blog.51cto.com/dressame/2308378

(1)
(1)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!