这里就想到了lrj说的理解EK但是使用Dinic
因为图较大,所以采用Dinic而不是EdmondsKarp
得益于接口一致性,无须理解Dinic就能使用它。
看到最小费用,又有隔开的操作(割),就是最小割,就想到了最大流(想了想用不到MCMF,这里挺需要注意的,所有网络流的题首先判断是MCMF还是只是MF)
建图有难度,但是很经典。
首先把边上的全都变成草。
添加S,T,就可以把联通块连在一起了
S连草,边权为d,割断就(叛逃到)T。
边上的草,cap为INF。
T类似。
然后任意两个相邻格(原始的,填好了边上之后)之间连U->V,V->U,CAP均为d。草到洞的边就割掉
#include<cstdio> #include<cstring> #include<queue> #include<algorithm> using namespace std; const int maxn = 50*50+10; const int INF = 1000000000; struct Edge { int from, to, cap, flow; }; bool operator < (const Edge& a, const Edge& b) { return a.from < b.from || (a.from == b.from && a.to < b.to); } struct Dinic { int n, m, s, t; vector<Edge> edges; // 边数的两倍 vector<int> G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号 bool vis[maxn]; // BFS使用 int d[maxn]; // 从起点到i的距离 int cur[maxn]; // 当前弧指针 void init(int n) { for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap) { edges.push_back((Edge){from, to, cap, 0}); edges.push_back((Edge){to, from, 0, 0}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS() { memset(vis, 0, sizeof(vis)); queue<int> Q; Q.push(s); vis[s] = 1; d[s] = 0; while(!Q.empty()) { int x = Q.front(); Q.pop(); for(int i = 0; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(!vis[e.to] && e.cap > e.flow) { vis[e.to] = 1; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vis[t]; } int DFS(int x, int a) { if(x == t || a == 0) return a; int flow = 0, f; for(int& i = cur[x]; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) { e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int Maxflow(int s, int t) { this->s = s; this->t = t; int flow = 0; while(BFS()) { memset(cur, 0, sizeof(cur)); flow += DFS(s, INF); } return flow; } }; Dinic g; int w, h; char pool[99][99]; inline int ID(int i, int j) { return i*w+j; } int main() { int T, d, f, b; scanf("%d", &T); while(T--) { scanf("%d%d%d%d%d", &w, &h, &d, &f, &b); for(int i = 0; i < h; i++) scanf("%s", pool[i]); int cost = 0; for(int i = 0; i < h; i++) { if(pool[i][0] == ‘.‘) { pool[i][0] = ‘#‘; cost += f; } if(pool[i][w-1] == ‘.‘) { pool[i][w-1] = ‘#‘; cost += f; } } for(int i = 0; i < w; i++) { if(pool[0][i] == ‘.‘) { pool[0][i] = ‘#‘; cost += f; } if(pool[h-1][i] == ‘.‘) { pool[h-1][i] = ‘#‘; cost += f; } } g.init(h*w+2); for(int i = 0; i < h; i++) for(int j = 0; j < w; j++){ if(pool[i][j] == ‘#‘) { // grass int cap = INF; if(i != 0 && i != h-1 && j != 0 && j != w-1) cap = d; g.AddEdge(h*w, ID(i,j), cap); // s->grass, cap=d or inf //起点设为S } else { // hole g.AddEdge(ID(i,j), h*w+1, f); // hole->t, cap=f } if(i > 0) g.AddEdge(ID(i,j), ID(i-1,j), b); //上下左右 if(i < h-1) g.AddEdge(ID(i,j), ID(i+1,j), b); if(j > 0) g.AddEdge(ID(i,j), ID(i,j-1), b); if(j < w-1) g.AddEdge(ID(i,j), ID(i,j+1), b); } printf("%d\n", cost + g.Maxflow(h*w, h*w+1)); } return 0; }
原文:https://www.cnblogs.com/lqerio/p/9860932.html