首页 > 其他 > 详细

uva1515 Pool construction

时间:2018-10-27 13:50:16      阅读:117      评论:0      收藏:0      [点我收藏+]

这里就想到了lrj说的理解EK但是使用Dinic

因为图较大,所以采用Dinic而不是EdmondsKarp

得益于接口一致性,无须理解Dinic就能使用它。

 

看到最小费用,又有隔开的操作(割),就是最小割,就想到了最大流(想了想用不到MCMF这里挺需要注意的,所有网络流的题首先判断是MCMF还是只是MF

建图有难度,但是很经典。

首先把边上的全都变成草。

添加S,T,就可以把联通块连在一起了

S连草,边权为d,割断就(叛逃到)T

边上的草,capINF

T类似。

然后任意两个相邻格(原始的,填好了边上之后)之间连U->V,V->UCAP均为d。草到洞的边就割掉

 

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;

const int maxn = 50*50+10;

const int INF = 1000000000;

struct Edge {
  int from, to, cap, flow;
};

bool operator < (const Edge& a, const Edge& b) {
  return a.from < b.from || (a.from == b.from && a.to < b.to);
}

struct Dinic {
  int n, m, s, t;
  vector<Edge> edges;    // 边数的两倍
  vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
  bool vis[maxn];        // BFS使用
  int d[maxn];           // 从起点到i的距离
  int cur[maxn];         // 当前弧指针

  void init(int n) {
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }

  void AddEdge(int from, int to, int cap) {
    edges.push_back((Edge){from, to, cap, 0});
    edges.push_back((Edge){to, from, 0, 0});
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
  }

  bool BFS() {
    memset(vis, 0, sizeof(vis));
    queue<int> Q;
    Q.push(s);
    vis[s] = 1;
    d[s] = 0;
    while(!Q.empty()) {
      int x = Q.front(); Q.pop();
      for(int i = 0; i < G[x].size(); i++) {
        Edge& e = edges[G[x][i]];
        if(!vis[e.to] && e.cap > e.flow) {
          vis[e.to] = 1;
          d[e.to] = d[x] + 1;
          Q.push(e.to);
        }
      }
    }
    return vis[t];
  }

  int DFS(int x, int a) {
    if(x == t || a == 0) return a;
    int flow = 0, f;
    for(int& i = cur[x]; i < G[x].size(); i++) {
      Edge& e = edges[G[x][i]];
      if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
        e.flow += f;
        edges[G[x][i]^1].flow -= f;
        flow += f;
        a -= f;
        if(a == 0) break;
      }
    }
    return flow;
  }

  int Maxflow(int s, int t) {
    this->s = s; this->t = t;
    int flow = 0;
    while(BFS()) {
      memset(cur, 0, sizeof(cur));
      flow += DFS(s, INF);
    }
    return flow;
  }
};

Dinic g;

int w, h;
char pool[99][99];

inline int ID(int i, int j) { return i*w+j; }

int main() {
  int T, d, f, b;
  scanf("%d", &T);
  while(T--) {
    scanf("%d%d%d%d%d", &w, &h, &d, &f, &b);
    for(int i = 0; i < h; i++)
        scanf("%s", pool[i]);
    int cost = 0;


    for(int i = 0; i < h; i++) {
      if(pool[i][0] == .) { pool[i][0] = #; cost += f; }
      if(pool[i][w-1] == .) { pool[i][w-1] = #; cost += f; }
    }
    for(int i = 0; i < w; i++) {
      if(pool[0][i] == .) { pool[0][i] = #; cost += f; }
      if(pool[h-1][i] == .) { pool[h-1][i] = #; cost += f; }
    }


    g.init(h*w+2);

    for(int i = 0; i < h; i++)
      for(int j = 0; j < w; j++){

        if(pool[i][j] == #) { // grass
          int cap = INF;
          if(i != 0 && i != h-1 && j != 0 && j != w-1)
            cap = d;
          g.AddEdge(h*w, ID(i,j), cap); // s->grass, cap=d or inf  //起点设为S
        }

        else { // hole
          g.AddEdge(ID(i,j), h*w+1, f); // hole->t, cap=f
        }

        if(i > 0)   g.AddEdge(ID(i,j), ID(i-1,j), b);    //上下左右
        if(i < h-1) g.AddEdge(ID(i,j), ID(i+1,j), b);
        if(j > 0)   g.AddEdge(ID(i,j), ID(i,j-1), b);
        if(j < w-1) g.AddEdge(ID(i,j), ID(i,j+1), b);
      }
    printf("%d\n", cost + g.Maxflow(h*w, h*w+1));
  }
  return 0;
}

 

uva1515 Pool construction

原文:https://www.cnblogs.com/lqerio/p/9860932.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!