线段树合并为什么我会在这个时候学这种东西
就是暴力合并两棵线段树(必须动态开节点),遇到空节点就返回
可以证明,对于\(m\)个仅有一个元素,权值范围在\([1, n]\)的线段树合并的复杂度为\(mlogn\)
对于此题来说,显然子树内与子树外互不影响,因此暴力判断一下翻转之后会不会变优就行了
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 1e7 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, val[MAXN], ls[MAXN], rs[MAXN], tot;
LL ans, c1, c2;
int newtree(int l, int r, int x) {
val[++tot] = 1;
if(l == r) return tot;
int mid = l + r >> 1, now = tot;
if(x <= mid) ls[now] = newtree(l, mid, x);
else rs[now] = newtree(mid + 1, r, x);
return now;
}
int merge(int l, int r, int x, int y) {
if(!x || !y) return x + y;
if(l == r) {val[++tot] = val[x] + val[y]; return tot;}
c1 += 1ll * val[rs[x]] * val[ls[y]], c2 += 1ll * val[ls[x]] * val[rs[y]];
int mid = l + r >> 1, now = ++tot;
ls[now] = merge(l, mid, ls[x], ls[y]);
rs[now] = merge(mid + 1, r, rs[x], rs[y]);
val[now] = val[x] + val[y];
return now;
}
int dfs() {
int v = read();
if(v) return newtree(1, N, v);
int now = merge(1, N, dfs(), dfs());
ans += min(c1, c2); c1 = c2 = 0;
return now;
}
int main() {
N = read();
dfs();
cout << ans;
return 0;
}
BZOJ2212: [Poi2011]Tree Rotations(线段树合并)
原文:https://www.cnblogs.com/zwfymqz/p/9862521.html