首页 > 其他 > 详细

pandas 常用清洗数据(一)

时间:2018-11-01 00:13:13      阅读:198      评论:0      收藏:0      [点我收藏+]

数据源获取:

https://www.kaggle.com/datasets

 

1、

Look at the some basic stats for the ‘imdb_score’ column: data.imdb_score.describe()
Select a column: data[‘movie_title’]
Select the first 10 rows of a column: data[‘duration’][:10]
Select multiple columns: data[[‘budget’,’gross’]]
Select all movies over two hours long: data[data[‘duration’] > 120]

 

data.country = data.country.fillna(‘’)
data.duration = data.duration.fillna(data.duration.mean())

data = pd.read_csv(‘movie_metadata.csv’, dtype={title_year: str})

data[‘movie_title’].str.upper()

Similarly, to get rid of trailing whitespace:

data[‘movie_title’].str.strip()

data = data.rename(columns = {‘title_year’:’release_date’, ‘movie_facebook_likes’:’facebook_likes’})

 

丢弃带有NAN的所有项
data.dropna()

丢弃所有元素都是NAN的行
data.dropna(how=all)

丢弃所有元素都是NAN的列
data.dropna(axis=1,how=all)  #axis = 0 行,=1 列

只保留至少有3个非NAN值的行
data.dropna(thresh=3)

 

pandas 常用清洗数据(一)

原文:https://www.cnblogs.com/cbugs/p/9886468.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!