首页 > 其他 > 详细

神经网络于过拟合

时间:2018-11-01 10:43:17      阅读:99      评论:0      收藏:0      [点我收藏+]

“Small” neural network (fewer parameters; more prone to underfitting)

Computationally cheaper

"Large" neural network (more parameters; more prone to overfitting)

Computationally more expensive.

Use regularization (λ) to address overfitting.

简单的神经网络(更少的参数)容易出现欠拟合,但优点是计算简单。

复杂的神经网络(跟多参数,更复杂的结构)一般情况下意味着更好的性能,但是计算成本高,而且容易出现过拟合现象,这时需要运用正则化解决过拟合问题。

神经网络于过拟合

原文:https://www.cnblogs.com/qkloveslife/p/9887119.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!