首页 > 编程语言 > 详细

python学习笔记:第12天 列表推导式和生成器

时间:2018-11-02 01:39:03      阅读:226      评论:0      收藏:0      [点我收藏+]

目录

1. 迭代器

什么是生成器呢,其实生成器的本质就是迭代器;在python中有3中方式来获取生成器(这里主要介绍前面2种)

  • 通过生成器函数获取
  • 通过各种推导式来实现生成器

生成器函数

我们来看一个普通的函数:

In[2]: def func1():
  ...:     print(‘aaaa‘)
  ...:     return 1111
  ...: 
In[3]: fun = func1()
aaaa
In[4]: print(fun)
1111

那么生成器函数跟普通函数有什么不同呢,我们只要把其中的return换成yield关键字参数就是生成器函数了:

In[5]: def func1():
  ...:     print(‘aaaa‘)
  ...:     yield 1111
  ...: 
In[6]: fun = func1()          # 此时并没有任何打印信息,可以说明函数并没有执行
In[7]: print(fun)             # 从输出可以看出这是一个生成器对象
<generator object func1 at 0x0000016F900D6DB0>

从上面的结果来看,我们发现函数func1根本就没有执行,而最后打印的是一个内存地址,这个就是生成器很明显的一个特性:惰性计算,那么我们要怎么执行它呢?我们可以回顾一下迭代器的取值方法:使用迭代器的__next__的方法可以取到迭代器的一个值,那生成器的本质就是迭代器,那我们也可以试下可以这样取值

In[8]: fun.__next__() # 从输出可以看出,yield也和return一样可以有返回值
aaaa                  # 这里我们就可以看到函数中的aaaa也打印了,表示函数在此处才执行
Out[8]: 1111

我们再来看个例子,观察下生成器是怎么工作的:

In[9]: def func1():
  ...:     print(‘aaaa‘)
  ...:     yield ‘我是第一个yield‘
  ...:     print(‘bbbb‘)
  ...:     yield ‘我是第二个yield‘
  ...:     print(‘cccc‘)
  ...:     
In[10]: gen = func1()           # 这里得到的是一个生成器,此处并不会运行函数
   ...: print(gen)
<generator object func1 at 0x0000016F900F8BA0>
In[11]: print(gen.__next__())   # 首次执行生成器的__netx__()函数时,开始执行函数,
aaaa                            # 直到遇到yield时返回,并且yield也可以有返回值
我是第一个yield
In[12]: print(gen.__next__())   # 再次运行__netx__()函数时,会继续执行函数(从上次yield的位置继续执行)
bbbb
我是第二个yield
In[13]: print(gen.__next__())   # 再次执行__next__()方法继续执行,此处再往下执行时没有了yield关键字,
cccc                            # 会抛出StopIteration异常(但时会执行后面的代码)
Traceback (most recent call last):
  File "D:\Environment\python-virtualenv\jupyter\lib\site-packages\IPython\core\interactiveshell.py", line 3265, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-13-9340d28f24b7>", line 1, in <module>
    print(gen.__next__())
StopIteration

从上面我们呢可以总结出:

  • yield也可以像return一样也是返回值
  • yield执行完之后会返回到调用者,执行后续的代码,直到再次调用__next__方法,此时生成器函数再从上次停止的位置继续执行
  • 当执行__next__方法后没有yield关键字时,会抛出StopIteration异常,但是会执行yield后面的代码

send方法

接下来我们来看send?法, send和__next__()?样都可以让?成器执?到下?个yield

In[14]: def eat():
   ...:     print("aaaa")
   ...:     a = yield 1111
   ...:     print("a=",a)
   ...:     b = yield "bbbb"
   ...:     print("b=",b)
   ...:     c = yield "cccc"
   ...:     print("c=",c)
   ...:     yield "GAME OVER"
   ...:     
In[15]: gen = eat() # 获取?成器
In[16]: ret1 = gen.__next__()
   ...: print(ret1)
aaaa
1111
In[17]: ret2 = gen.send("我send了一个参数给a")
   ...: print(ret2)
a= 我send了一个参数给a              # 可以看出send的数据是被上一个yield前的a给接收了
bbbb
In[18]: ret3 = gen.send("我send了一个参数给b")
   ...: print(ret3)               # 这里send的数据也是被b接收了
b= 我send了一个参数给b
cccc
In[19]: ret4 = gen.send("我send了一个参数给c")
   ...: print(ret4)
c= 我send了一个参数给c
GAME OVER

**send和__next__()**:

  1. send和next()都是让?成器向下走?次
  2. send可以给上?个yield的位置传递值, 不能给最后?个yield发送值. 在第?次执??成器代码的时候不能使?send()

2. 推导式

列表推导式

关于列表推导式,其实之前的文章中已经使用过,这里再正式介绍下;假设我们要打印1到20之间的奇数,照之前正常的写法我们要这么写:

# 假设有一个需求,要写一个循环遍历1到20之间所有的奇数
lst = []
for i in range(1, 21):
    if i % 2 == 1:
        lst.append(i)
print(lst)
# 结果:
# [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] 

列表推导式的语法为:

  • 第一种只使用for循环遍历
[expr for item in itratorable]

# 相当于以下代码
ret = []
for item in iterable:
  ret.append(expr)
  • 第二种for循环遍历再加if条件判断
[expr for item in iterable if cond]

# 相当于以下结构代码
ret = []
for item in iterable:
    if cond:
        ret.append(expr)

第三种for循环加if双分支结构,注意此时的if/else语句要写在for语句前面

[expr1 if cond else expr2 for item in iterable ]

# 相当于以下代码
ret = []
for item in iterable:
    if cond:
        ret.append(expr1)
    else:
        ret.append(expr2)

对于上面的例子使用列表推导式可以这样写:

# 使用推导式:
lst = [i for i in range(1, 21) if i % 2 == 1]
print(lst)
# 结果:
# [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

使用列表推导式我们可以发现代码时精简了许多,而且代码的可读性更高了,其实还有一个优势是推导式速度更快:

In [1]: %%timeit
   ...: lst1 = []
   ...: for i in range(10000):
   ...:     lst1.append(i)
   ...:
788 μs ± 14.9 μs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [2]: %%timeit
   ...: lst1 = [i for i in range(10000)]
   ...:
307 μs ± 1.84 μs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [3]:

从上面的结果分析,使用列表推导式生成列表的方式要比普通for循环的效率要高很多

字典推导式

字典跟列表推导式的语法非常相似,使用{}括起来,然后在里面想列表推导式一样写自己的表达式即可:

dic = {expr for k, v in iterable if cond}        # 这里的expr表达式可以写成:k: v的形式

# 相当于以下代码
dic = dict()
for k, v in iterable:
    if cond:
        expr(dic)

例如,把字典中的键值对都调换以下可以用如下方法:

dic = {"张无忌":"赵敏", "杨过":"小龙女", "郭靖":"黄蓉"}
# dic = {‘k1‘:‘v1‘, ‘k2‘: ‘v2‘, ‘k3‘: ‘v3‘}

dic = {v: k for k, v in dic.items()}
print(dic)

生成器表达式

对于生成器表达式来说,只需要把列表推导式的中括号换成小括号就可以了:

In[20]: def inc(x):
   ...:     print(‘inc {0}‘.format(x))
   ...:     return x+1
   ...: 
In[21]: g = (inc(x) for x in range(10))             # 这里的g就是一个生成器对象
In[22]: print(g)
<generator object <genexpr> at 0x0000016F90161DB0>
In[23]: print(g.__next__())
inc 0
1
In[24]: print(g.__next__())                         # 也可以使用__next__方法取出一个值
inc 1
2
In[25]: print(g.__next__())
inc 2
3
In[26]: next(g)                                     # 使用netx()和__next__()方法是一样的
inc 3
Out[26]: 4
In[27]: next(g)
inc 4
Out[27]: 5

当然,生成器表达式也可以跟其他推导式一样套用if语句,其语法都是一样的,这里就不做介绍了。

?成器表达式和列表推导式的区别:

  • 列表推导式比较耗内存. ?次性加载. ?成器表达式?乎不占?内存. 使?的时候才分
    配和使?内存

  • 得到的值不?样. 列表推导式得到的是?个列表. ?成器表达式获取的是?个?成器.

?成器的惰性机制: ?成器只有在访问的时候才取值. 说?了. 你找他要他才给你值. 不找他
要. 他是不会执?的.

def func():
  print(111)
  yield 222

g = func()            # ?成器g
g1 = (i for i in g)   # ?成器g1. 但是g1的数据来源于g
g2 = (i for i in g1)  # ?成器g2. 来源g1
print(list(g))        # 获取g中的数据. 这时func()才会被执?. 打印111.获取到222. g完毕.
print(list(g1))       # 获取g1中的数据. g1的数据来源是g. 但是g已经取完了. g1 也就没有数据了
print(list(g2))       # 和g1同理
                      # 注:list中有for的调用,可以迭代遍历生成器元素
#结果:
# 1111
# [222]
# []
# []

访问生成器的另一种方法

使用yield from iterator语句

In[28]: def test():
   ...:     l1 = [1, 2, 3, 4]
   ...:     l2 = [‘a‘, ‘b‘, ‘c‘, ‘d‘]
   ...:     yield from l1             # 
   ...:     yield from l2
   ...:     
In[29]: g = test()
In[30]: for i in g:
   ...:     print(i)
   ...:     
1
2
3
4
a
b
c
d

python学习笔记:第12天 列表推导式和生成器

原文:https://www.cnblogs.com/zpzhue1/p/9892600.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!