首页 > 其他 > 详细

class 2-3 小项目练习

时间:2018-11-03 18:54:13      阅读:152      评论:0      收藏:0      [点我收藏+]

空气质量分指数计算方法(框架)

技术分享图片
 1 def cal_liner(iaqi_lo,iaqi_hi,bp_lo,bp_hi,cp):
 2     """范围缩放"""
 3     iaqi =(iaqi_hi - iaqi_lo)*(cp -bp_lo) /(bp_hi - bp_lo) + iaqi_lo
 4     return iaqi
 5 
 6 def cal_pm_iaqi(pm_val):
 7     if 0 <= pm_val <36:
 8         pm_iaqi = cal_liner(0,50,0,35,pm_val)
 9     elif 36 <= pm_val <76:
10         pm_iaqi = cal_liner(0,100,35,75,pm_val)
11     elif 76 <= pm_val < 116:
12         pm_iaqi = cal_liner(0, 150, 75, 115, pm_val)
13     else:
14         pass
15 
16 def cal_co_iaqi(co_val):
17     if 0 <= co_val <3:
18         co_iaqi = cal_liner(0,50,0,3,co_val)
19     elif 3 <= co_val <5:
20         co_iaqi = cal_liner(0,100,2,4,co_val)
21     else:
22         pass
23 
24 def cal_aqi(param_list):
25     pm_val = param_list[0]
26     co_val = param_list[1]
27     pm_iaqi = cal_pm_iaqi(pm_val)
28     co_iaqi = cal_pm_iaqi(co_val)
29     iaqi_list = []
30     iaqi_list.append(pm_iaqi)
31     iaqi_list.append(co_iaqi)
32 
33     aqi = max(iaqi_list)
34     return aqi
35 
36 def main():
37     print(请输入以下信息,使用空格分割)
38     input_str = input((1)PM2.5 (2)CO:)
39     str_list = input_str.split( )
40     pm_val = float(str_list[0])
41     co_val = float(str_list[1])
42     param_list = []
43     param_list.append(pm_val)
44     param_list.append(co_val)
45     #调用AQI计算函数
46     aqi_val = cal_aqi(param_list)
47     print(空气质量指数为:{}.format(aqi_val))
48 
49 if __name__ ==  __main__:
50     main()
View Code
  • JSON(javaScript Object Notation)是一种轻量级数据交换格式
  • 可以对复杂数据进行表达和存储,易于阅读和理解
  • 规则
    • 数据保存在键值对中
    • 键值对之间由逗号分隔
    • 花括号用于保存键值对数据组成的对象
    • 方括号用于保存键值对数据组成的数组
  • 采用对象,数组方式组织起来的键值对可以表示任何结构的数据
  • JSON格式是互联网上主要使用的复杂数据格式之一
  • JSON库是处理JSON格式的python标准库
  • 两个过程:
    • 编码,将python数据类型准换成json格式的过程
    • 解码,从json格式中解析数据对应到python数据类型的过程
      • dumps():将Python数据类型转换为JSON格式的过程
      • loads():将JSON格式字符串转换为Python数据类型
      • dump():与dumps()功能一致,输出到文件
      • load():与loads()功能一致,从文件读入
  • 列表排序
    • list.sort(func)
    • func指定排序的方法
    • func可以通过lambda函数实现
      --snip--
          city_list.sort(key= lambda city:city[aqi]) #func:函数为lambda,city为元素
          top5_list = city_list[:5] #切片拿取前5个元素
          f = open(top5_aqi.json,mode=w,encoding=utf-8)
          json.dump(top5_list,f,ensure_ascii=False)   #第二元素为打开文件对象,最后为编码格式,中文false
          f.close
  • 技术分享图片
     1 import json
     2 
     3 def process_json_file(filepath):
     4     f = open(filepath,mode=r,encoding=utf-8)
     5     json.load(f)
     6     city_list = json.load(f)
     7     return city_list
     8 
     9 def main():
    10     filepath = input(请输入json文件名称:)
    11     city_list = process_json_file(filepath)
    12     city_list.sort(key= lambda city:city[aqi]) #func:函数为lambda,city为元素
    13     top5_list = city_list[:5] #切片拿取前5个元素
    14     f = open(top5_aqi.json,mode=w,encoding=utf-8)
    15     json.dump(top5_list,f,ensure_ascii=False)   #第二元素为打开文件对象,最后为编码格式,中文false
    16     f.close
    17 
    18 if __name__ ==  __main__:
    19     main()
    View Code
  • CSV格式是一种通用的、相对简单的文件格式,在商业和科学领域广泛使用
  • 规则
    • 以行为单位
    • 每行表示一条记录
    • 以英文逗号分割每列数据(如果数据为空,逗号也要保留)
    • 列名通常放置在问价第一行
  • CSV文件操作
    • import csv
    • csv.writerow(list)将列表中的元素写入文件的一行中
  • CSV文件读取
    • import csv
    • csv.reader()将每行记录作为列表返回
    • 使用with语句操作文件对象
      with open(file_name) as somefile:
          for line in somefile:
              print(line)
    • 使用with语句,不管在处理文件过程中是否发生发生异常,都能保证with语句执行完毕后关闭文件,不需要close语句
--snip--
lines.append(list(city_list[0].key()))  #使用list拿到city的keys
    for city in city_list:
        lines.append(list(city.values()))
    f = open(aqi.csv,w,encoding=utf-8,newline=‘‘)  #newline为空表示末尾不加任何字符,否则默认加空行
    writer = csv.writer(f)
    for line in lines:
        writer.writerow(line)
--snip--
技术分享图片
 1 import json
 2 import csv
 3 def process_json_file(filepath):
 4     f = open(filepath,mode=r,encoding=utf-8)
 5     city_list = json.load(f)
 6     return city_list
 7 
 8 def main():
 9     filepath = input(请输入json文件名称:)
10     city_list = process_json_file(filepath)
11     city_list.sort(key= lambda city:city[aqi]) #func:函数为lambda,city为元素
12     lines = []
13     lines.append(list(city_list[0].key()))  #使用list拿到city的keys
14     for city in city_list:
15         lines.append(list(city.values()))
16     f = open(aqi.csv,w,encoding=utf-8,newline=‘‘)  #newline为空表示末尾不加任何字符,否则默认加空行
17     writer = csv.writer(f)
18     for line in lines:
19         writer.writerow(line)
20 
21 if __name__ ==  __main__:
22     main()
View Code
  •  OS模块
    • OS模块提供了与系统、目录操作相关的功能,不受平台限制
    • os.remove():删除文件
    • os.makedirs():创建多层目录
    • os.rmdir():删除单级目录
    • os.rename():重命名文件
    • os.path.isfile():判断是否为文件
    • os.path.isdir():判断是否为目录
    • os.path.join():链接目录,如path1链接path2为path1/path2
    • os.path.splitext():将文件分割成文件名与扩展名,如分割tmp.txt为tmp和.txt
      import csv
      import os
      def process_json_file(filepath):   #解码json文件
          # f = open(filepath,mode=‘r‘,encoding=‘utf-8‘)
          # city_list = json.load(f)
          # return city_list
          with open(filepath,mode=r,encoding=utf-8) as f:    #with语句不需要关闭文件
              city_list =json.load(f)
          print(city_list)
      def process_csv_file(filepath):
          with open(filepath,mode=r,encoding=utf-8,newline=‘‘) as f:
              reader = csv.reader(f)
              for row in reader:
                  print(,.jion(row))     #通过逗号连接语句,.jion
      技术分享图片
       1 import json
       2 import csv
       3 import os
       4 def process_json_file(filepath):   #解码json文件
       5     # f = open(filepath,mode=‘r‘,encoding=‘utf-8‘)
       6     # city_list = json.load(f)
       7     # return city_list
       8     with open(filepath,mode=r,encoding=utf-8) as f:    #with语句不需要关闭文件
       9         city_list =json.load(f)
      10     print(city_list)
      11 def process_csv_file(filepath):
      12     with open(filepath,mode=r,encoding=utf-8,newline=‘‘) as f:
      13         reader = csv.reader(f)
      14         for row in reader:
      15             print(,.jion(row))     #通过逗号连接语句,.jion
      16 
      17 def main():
      18     filepath = input(请输入json文件名称:)
      19     filename,file_ext = os.path.splitext(filepath)
      20     if file_ext == .json:
      21         process_json_file(filepath)
      22     elif file_ext == .csv:
      23         process_csv_file(filepath)
      24     else:
      25         print(不支持文件格式!)
      26 
      27 if __name__ ==  __main__:
      28     main()
      View Code

 网络爬虫:

  • 自动爬去互联网信息程序;利用互联网数据进行分析、开发产品
  • 步骤
    • 通过网络链接获取网页内容(字符串)
    • 对获得的网页内容进行处理

requests模块

  • requests模块时一个简洁且简单的处理HTTP请求工具,支持丰富的链接访问功能,包括url获取,HTTP会话,Cookie记录等
  • requests网页请求
    • get():对应HTTP的GET方式
    • post():对应HTTP的POST方式,用于传递用户数据
  • requests对象属性
    • status_code:HTTP请求的返回状态,200表示链接成功,400表示失败
    • text:HTTP相应内容的字符串形式,即URL 对应的页面内容
    • 更多方法参考:https://doc.python-requests.org/
import requests

def get_html_text(url):
    """返回url的文本"""
    r = requests.get(url,timeout =30)
    #print(r.status_code)    #显示状态,200为链接ok
    return r.text   #获取文本

def main():
    city_pinyin = input(请输入城市拼音:)
    url = http://pm25.in/+city_pinyin
    url_text = get_html_text(url)
    #print(url_text)      #属性名r.text d调用为url.text

    aqi_div=‘‘‘<div class="span12 data">
        <div class="span1">
          <div class="value">
             ‘‘‘      
    #注意复制范围,一直取值到数字的前面,可能会有空格
    index = url_text.find(aqi_div)
    begin_index = index +len(aqi_div)   #从开始索引号‘<‘加上文本长度
    end_index = begin_index + 2             #再获取2位为AQI值
    aqi_value = url_text[begin_index: end_index]
    print(空气质量为:{}.format(aqi_value))
    
if __name__ ==  __main__:
    main()

 网页解析

  • 解析器输出的树是由DOM元素和属性节点组成的。DOM的全称为:Document Object Model。它是HTML文档的对象化描述,也是HTML元素与外界(如Javascript)的接口。
        DOM与标签有着几乎一一对应的关系,如下:
        <html>
          <body>
            <p>hello world</p>
            <div><img src="aa.png"/></div>
          </body>
        </html>
    • 技术分享图片
  • beautifulSoup解析网站(用于解析HTML或XML)
    • pip install beautifulsoup4
    • import bs4
    • 步骤
      • 创建BeautifulSoup对象
      • 查询节点
        • find, 找到第一个满足条件的节点
        • find_all,找到所有满足条件的节点
  • 例:创建BeautifulSoup对象 
    bs = BeautifulSoup(
            url,
            html_parser, 指定解析器    #一般默认lxml
            encoding  指定编码格式(确保和网页编码格式一致)  #如果不一致会出现乱码
            )
  •  查找节点
    • <a href=‘a.html‘ class=‘a_link‘>next page</a>
    • 可按节点类型、属性内容访问
    • 按类型查找节点
      • bs.find_all(‘a‘)       #查找到所有a标签
    • 按属性查找节点
      • bs.find_all(‘a‘,href=‘a.html‘)     #查找a标签,到所有符合a.html属性
      • bs.find_all(‘a‘,href=‘a.html‘,string=‘next page‘)
      • bs.find_all(‘a‘,class_=‘a.link‘)        #注意:是class_
      • 或者bs.find_all(‘a‘,{‘class‘:‘a_link‘})
import requests
from bs4 import BeautifulSoup

def get_city_aqi(city_pinyin):
    url = http://pm25.in/+city_pinyin
    r = requests.get(url,timeout=30)
    bs = BeautifulSoup(r.text,lxml)
    #bs = BeautifulSoup.find_all(‘div‘,‘span‘) 
    div_list= bs.find_all(div,{class:span1})   #遗漏
    city_AQI=[]
    for i in range(8):
        div_content = div_list[i]   #对其list进行遍历
        aqi = div_content.find(div,{class:value}).text.strip()
        #AQI = bs.find_all(‘div‘,‘value‘).text.strip()   #应以键值对出现
        caption = div_content.find(div,{class:caption}).text.strip()
        #city_AQI = city_AQI.append((caption, aqi)) 
        city_AQI.append((caption, aqi))
    return city_AQI

def main():
    city_pinyin = input(请输入城市拼音:)
    city_aqi =get_city_aqi(city_pinyin)
    print(city_aqi)

if __name__ ==  __main__:
    main()

 遍历城市

技术分享图片
 1 import requests
 2 from bs4 import BeautifulSoup
 3 
 4 def get_city_aqi(city_pinyin):
 5     url = http://pm25.in/+city_pinyin
 6     r = requests.get(url,timeout=30)
 7     bs = BeautifulSoup(r.text,lxml)
 8     div_list= bs.find_all(div,{class:span1})
 9     city_AQI=[]
10     for i in range(8):
11         div_content = div_list[i]
12         aqi = div_content.find(div,{class:value}).text.strip()
13         caption = div_content.find(div,{class:caption}).text.strip()
14         city_AQI.append((caption, aqi))
15     return city_AQI
16 
17 def get_all_cities():
18     url = http://pm25.in/
19     city_list = []
20     r = requests.get(url, timeout=30)
21     bs = BeautifulSoup(r.text, lxml)
22     city_all_name = bs.find_all(div, {class: bottom})[1]
23     city_link_list = city_all_name.find_all(a)
24     #for i in city_all_name:   此段只要一个bottom元素,将无法输出
25     for city_link in city_link_list:
26         city_name = city_link.text
27         city_pinyin = city_link[href][1:]
28         #r = city_all_name[1]
29         #city_name = r.find(‘div‘,{‘href‘:‘city_link‘}).text.strip()
30         #city_link = r.find(‘div‘,{‘href‘:‘city_link‘})[1:]
31         city_list.append((city_name,city_pinyin))
32     return city_list
33 
34 def main():
35     city_list = get_all_cities()
36     for city in city_list:
37         city_name =city[0]
38         city_pinyin = city[1]
39         city_aqi =get_city_aqi(city_pinyin)
40         print(city,city_aqi)
41 
42 if __name__ ==  __main__:
43     main()
View Code
--snip--

def get_all_cities():
    url = http://pm25.in/
    city_list = []
    r = requests.get(url, timeout=30)
    bs = BeautifulSoup(r.text, lxml)
    city_all_name = bs.find_all(div, {class: bottom})[1]
    city_link_list = city_all_name.find_all(a)    #寻找所有bottom下的a标签

    for city_link in city_link_list:
        city_name = city_link.text          #取city_link文本
        city_pinyin = city_link[href][1:]    #取其‘/’后的数字
        city_list.append((city_name,city_pinyin))
    return city_list

def main():
    city_list = get_all_cities()   
    for city in city_list:       #对获取列表进行遍历输出
        city_name =city[0]
        city_pinyin = city[1]
        city_aqi =get_city_aqi(city_pinyin)
        print(city,city_aqi)   #注意为city,city_list将重复报错

if __name__ ==  __main__:
    main()

 字符串加列表 ‘abc’+[1,2,3]转换为[‘abc‘]+[1,2,3] 

存入转换为CSV格式

技术分享图片
 1 import requests
 2 from bs4 import BeautifulSoup
 3 import csv
 4 
 5 def get_city_aqi(city_pinyin):
 6     url = http://pm25.in/+city_pinyin
 7     r = requests.get(url,timeout=30)
 8     bs = BeautifulSoup(r.text,lxml)
 9     div_list= bs.find_all(div,{class:span1})
10     city_AQI=[]
11     for i in range(8):
12         div_content = div_list[i]
13         aqi = div_content.find(div,{class:value}).text.strip()
14         caption = div_content.find(div,{class:caption}).text.strip()
15         city_AQI.append(aqi)
16     return city_AQI
17 
18 def get_all_cities():
19     url = http://pm25.in/
20     city_list = []
21     r = requests.get(url, timeout=30)
22     bs = BeautifulSoup(r.text, lxml)
23     city_all_name = bs.find_all(div, {class: bottom})[1]
24     city_link_list = city_all_name.find_all(a)
25     for city_link in city_link_list:
26         city_name = city_link.text
27         city_pinyin = city_link[href][1:]
28         city_list.append((city_name,city_pinyin))
29     return city_list
30 
31 def main():
32     city_list = get_all_cities()
33     header = [City,AQI,PM2.5/1H,PM10/H,CO/H,NO2/H,O3/1H,O3/8H,SO2/H,] #指定列名
34     with open(china_city_AQI.csv,w,encoding=utf-8,newline=‘‘) as f:
35         writer = csv.writer(f)
36         writer.writerow(header)
37         for i,city in enumerate(city_list):   #enumerate科学计数法
38             if (i+1)%10 ==0:   #实时查看处理进度
39                 print(已处理{}条记录,共{}记录.format(i+1,len(city_list)))
40             city_name = city[0]
41             city_pinyin = city[1]
42             city_aqi = get_city_aqi(city_pinyin)
43             row= [city_name]+city_aqi    #字符串转换为列表格式[]
44             writer.writerow(row)
45 
46 if __name__ ==  __main__:
47     main()
View Code
--snip--
def main():
    city_list = get_all_cities()
    header = [city,AQI,PM2.5/1H,PM10/H,CO/H,NO2/H,‘O3/1H‘,O3/8H,SO2/H] #指定列名
    with open(china_city_AQI.csv,w,encoding=utf-8,newline=‘‘) as f:
        writer = csv.writer(f)
        writer.writerow(header)
        for i,city in enumerate(city_list):   #enumerate科学计数法
            if (i+1)%10 ==0:
                print(已处理{}条记录,共{}记录.format(i+1,len(city_list)))
            city_name = city[0]
            city_pinyin = city[1]
            city_aqi = get_city_aqi(city_pinyin)
            row= [city_name]+city_aqi
            writer.writerow(row)

if __name__ ==  __main__:
    main()

Pandas库:

    • 是一个结构化数据的工具集  
    • 基础为Numpy,提供了高性能的矩阵运算
    • 应用,数据挖掘,数据分析
      • 学生成绩分析、股票数据分析  
    • 提供数据清洗功能  
  • Pandas的数据结构(Series)
    • 类似一维数组的对象  
    • 通过list构建Series
      • ser_obj = pd.Series(range(10))  
      • 技术分享图片例:技术分享图片
    • 由数据和索引组成
      • 索引在左,数据在右
      • 索引是自动创建的  
    • 获取数据和索引
      • ser_obj.index,ser_obj.values  
      • 技术分享图片
    • 预览数据
      • ser_obj.head(n) #输出数据前几条数据  
      • wer_obj.tail(n)  #数据数据后几条数据  
      • 例:技术分享图片
    • 通过索引获取数据
      • ser_obj[idx]  
    • 索引与数据的对应关系仍保持在数组的运算的结果中国  
    • 通过dict构建Series  
    • name属性
      • ser_obj.name, ser_obj.index.name  
  • DataFrame
    • 类似多维数组、表格数据(如,Excel,R中的data.frame
    • 每列数据可以是不同类型,what about ndarray?  
    • 索引包括列索引和行索引
      • 技术分享图片
    • 通过ndarray构建DataFrame  
    • 通过dict构建DataFrame  
    • 通过索引获取列数据(Series类型)
      • df_obj[col_idx]或df_obj.col_idx  
    • 增加列数据,类似dict添加key-value
      • df_obj[new_col_idx] = data  
    • 删除列
      • del df_obj[col_idx]
  •  索引操作
    • DataFrame索引
      • 列索引
        • df_obj[ ‘label‘ ]   #label为标签名。。。
      • 不连续索引
        • df_obj[[ ‘label1‘, ‘label2‘ ]]  #中间的[]表示传进去的的为列表
          技术分享图片
          import pandas as pd
          
          def main():
              aqi_data = pd.read_csv(china_city_AQI.csv)
              #print(aqi_data.head(5))
              #print(aqi_data[‘AQI‘])
              print(aqi_data[[city,AQI]]) #中间的中括号为列表
          
          if __name__ ==  __main__:
              main()
          View Code
  • 排序
    • sort_index,索引排序
      • 对DataFrame操作时注意轴方向
    • 按值排序
      • sort_values(by = ‘label‘)    #label为标签名 AQI。。。
  • 常用统计计算
    • sum,mean,max,min.....
    • axis=0按列统计,axis=1 按行统计
    • skipna排除缺失值,默认为True
    • idmax,idmin,cumsum
  • 统计描述
    • describe产生多个统计数据
    • 常用统计计算和描述
      • count:非NA值得数量
      • describe:针对series或各DataFrame列计算汇总统计
      • min,max:计算最小值,最大值
      • argmin,argmax:计算能够获取到最小值和最大值的索引位置(整数)
      • idxmin,idxmax:计算能够获取到最小值和最大值的索引值
      • quantile:计算样本的分数位(0到1)
      • sum:值得总和
      • mean:值得平均数
      • median:值的算术中位数(50%分位数)
      • mad:根据平均值计算平均绝对离差
      • var:样本值的方差
      • std:样本值的标准差
import pandas as pd

def main():
    aqi_data = pd.read_csv(china_city_AQI.csv)
    print(基本信息:)
    print(aqi_data.info())
    print(数据预览:)
    print(aqi_data.head())

    #基本统计
    print(AQI最大值:, aqi_data[AQI].max())
    print(AQI最大值:, aqi_data[AQI].min())
    print(AQI最大值:, aqi_data[AQI].mean())

    #top10
    top10_cities= aqi_data.sort_values(by=[AQI]).head(10)
    print(空气质量最好的10个城市:,top10_cities)
    #bottom10
    #bottom10_cities = aqi_data.sort_values(by=[‘AQI‘]).tail(10)
    bottom10_cities = aqi_data.sort_values(by=[AQI],ascending= False).head(10)   #同理上述写法,降序排列
    print(空气质量最差的10个城市:, bottom10_cities)

    #保存csv文件
    top10_cities.to_csv(top10_aqi.csv,index = False)   #index为不需要序列号
    bottom10_cities.to_csv(top10_aqi.csv,index = False)

if __name__ ==  __main__:
    main()

Pandas数据清洗

  • 处理缺失数据
    • dropna()丢弃缺失数据
    • fillna()填充缺失数据
  • 数据过滤
    • df[filter_condition]根据filter_condition对数据进行过滤
技术分享图片
 1 import pandas as pd
 2 
 3 def main():
 4     aqi_data = pd.read_csv(china_city_AQI.csv)
 5     print(基本信息:)
 6     print(aqi_data.info())
 7     print(数据预览:)
 8     print(aqi_data.head())
 9 
10     #数据清洗,只保留AQI>0的数据
11     # filter_condition = aqi_data[‘AQI‘] > 0
12     # clean_data = aqi_data[filter_condition]或者
13     clean_aqi_data = aqi_data[aqi_data[AQI] > 0]
14 
15     #基本统计
16     print(AQI最大值:, aqi_data[AQI].max())
17     print(AQI最大值:, aqi_data[AQI].min())
18     print(AQI最大值:, aqi_data[AQI].mean())
19 
20     #top10
21     top10_cities= clean_aqi_data.sort_values(by=[AQI]).head(10)
22     print(空气质量最好的10个城市:,top10_cities)
23     #bottom10_cities = clean_aqi_data.sort_values(by=[‘AQI‘]).tail(10)或者
24     bottom10_cities = clean_aqi_data.sort_values(by=[AQI],ascending= False).head(10)   #同理上述写法,降序排列
25     print(空气质量最差的10个城市:, bottom10_cities)
26 
27 if __name__ ==  __main__:
28     main()
View Code
--snip--

    #数据清洗,只保留AQI>0的数据
    # filter_condition = aqi_data[‘AQI‘] > 0
    # clean_data = aqi_data[filter_condition]或者
    clean_aqi_data = aqi_data[aqi_data[AQI] > 0]

--snip--

Pandas数据可视化

  • pandas提供了内建的绘图功能(基于matplotlib)
  • plot(kind,x,y,title,figsize)    #kind可以是’line’, ‘bar’, ‘barh’, ‘kde’
    • x,y横纵坐标对应的数据列
    • title:图像名
    • figsize:图像尺寸
    • 参照:https://blog.csdn.net/hustqb/article/details/54410670
  • 保存图片:plt.savefig()
  • 更多例子:http://pandas.pydata.org/pandas-docs/stable/visualization.html
import pandas as pd

def main():
    aqi_data = pd.read_csv(china_city_AQI.csv)
    print(基本信息:)
    print(aqi_data.info())
    print(数据预览:)
    print(aqi_data.head())

    #基本统计
    print(AQI最大值:, aqi_data[AQI].max())

    #top10
    top10_cities= aqi_data.sort_values(by=[AQI]).head(10)
    print(空气质量最好的10个城市:,top10_cities)
    #bottom10
    #bottom10_cities = aqi_data.sort_values(by=[‘AQI‘]).tail(10)
    bottom10_cities = aqi_data.sort_values(by=[AQI],ascending= False).head(10)   #同理上述写法,降序排列
    print(空气质量最差的10个城市:, bottom10_cities)

    #保存csv文件
    top10_cities.to_csv(top10_aqi.csv,index = False)   #index为不需要序列号
    bottom10_cities.to_csv(bottom10_aqi.csv,index = False)

if __name__ ==  __main__:
    main()

 

class 2-3 小项目练习

原文:https://www.cnblogs.com/Mack-Yang/p/9826019.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!