首页 > 其他 > 详细

Find a multiple POJ - 2356 (抽屉原理)

时间:2018-11-03 21:29:16      阅读:158      评论:0      收藏:0      [点我收藏+]

抽屉原理:   

形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。
 
形式二:设把nm+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于m+1。
 
形式三:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。
  
题意:n个不同的元素,任意一个或者多个相加为n的倍数。找到这些元素。第一个输出元素的个数,后面分别输出这些元素。(多种情况输出一组)
 
  分析:被n求模的余数为 0,1,2,3....n-1    有n个元素,任意几个数的和为n的倍数,那么这些和假设为 a1, a2 ,a3 ..... am 那么m一定大于n  
     把余数当做抽屉,一定会有至少一个抽屉有两个元素!就是抽屉原理的形式一。
 
#include<cstdio>
#include<cstring>

const int maxn = 1e5 + 5;
int num[maxn], hash[maxn], sum[maxn];
int n;

int main()
{
    while (scanf("%d", &n) != EOF){
        memset(hash, 0, sizeof(hash));
        for (int i = 1; i <= n; ++i)
            scanf("%d", &num[i]);

        int t = 1, s = 1;
        for (int i = 1; i <= n; ++i)
        {
            sum[i] = (sum[i - 1] + num[i]) % n;
            if (sum[i] == 0){
                t = i;
                break;
            }
            if (hash[sum[i]] > 0){
                s = hash[sum[i]] + 1;
                t = i;
                break;
            }
            hash[sum[i]] = i;
        }
        printf("%d\n", t - s + 1);
        for (int i = s; i <= t; ++i)
            printf("%d\n", num[i]);
    }
}

 

Find a multiple POJ - 2356 (抽屉原理)

原文:https://www.cnblogs.com/ALINGMAOMAO/p/9902103.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!