首页 > 其他 > 详细

[洛谷P2174]小Z的神奇数列

时间:2018-11-04 15:05:16      阅读:166      评论:0      收藏:0      [点我收藏+]

目大意:有$n(n\leqslant10^6)$个数,$5$种操作:

  1. $D\;x:$从数列中删除$x$,相同的数只删除一个
  2. $B:$最大值
  3. $S:$最小值
  4. $M:$输出$max^{min}\pmod{317847191}$
  5. $T:$输出乘积模$317847191$

题解:堆,没有插入,可以离线倒着搞,把删除变成插入即可

题解:卡$map$

 

C++ Code:

#include <cstdio>
#include <algorithm>
#include <map>
#include <vector>
#include <queue>
#include <cctype>
namespace R {
	int x, ch;
	inline int read() {
		ch = getchar();
		while (isspace(ch)) ch = getchar();
		for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15);
		return x;
	}
}
using R::read;

#define maxn 1000010
const int mod = 317847191;
inline int pw(int base, int p) {
	int res = 1;
	for (; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
	return res;
}

int n, m;
long long prod = 1;
int s[maxn], c[maxn];
int ans[maxn];
int ret[maxn], num[maxn], cnt[maxn];
char op[maxn];

std::priority_queue<int> Max;
std::priority_queue<int, std::vector<int>, std::greater<int> > Min;

int main() {
	n = read(), m = read();
	for (int i = 1; i <= n; i++) s[i] = read();
	std::sort(s + 1, s + n + 1);
	for (int i = 1, x; i <= n; i++) {
		if (s[i] != s[i - 1]) x = i;
		else x = num[i - 1];
		num[i] = x;
		ret[x] = s[i];
	}
	for (int i = 1; i <= m; i++) {
		scanf("%1s", op + i);
		if (op[i] == ‘D‘) c[i] = read(), cnt[std::lower_bound(s + 1, s + n + 1, c[i]) - s]++;
	}
	for (int i = 1; i <= n; i++) if (!cnt[num[i]]) {
		Max.push(s[i]);
		Min.push(s[i]);
		prod = prod * s[i] % mod;
	} else cnt[num[i]]--;
	for (int i = m; i; i--) {
		switch (op[i]) {
			case ‘D‘: {
				Max.push(c[i]);
				Min.push(c[i]);
				prod = prod * c[i] % mod;
				break;
			}
			case ‘B‘: ans[i] = Max.top(); break;
			case ‘S‘: ans[i] = Min.top(); break;
			case ‘M‘: ans[i] = pw(Max.top(), Min.top()); break;
			case ‘T‘: ans[i] = prod;
		}
	}
	for (int i = 1; i <= m; i++) if (op[i] != ‘D‘) printf("%d\n", ans[i]);
	return 0;
}

  

[洛谷P2174]小Z的神奇数列

原文:https://www.cnblogs.com/Memory-of-winter/p/9903961.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!