二叉树查找效率很高,但是它有一个缺点。类似下面一棵树,查找效率是线性的:
于是,引出了平衡二叉树(Self-balancing binary search tree),也叫 BTree(balance tree),AVLTree
它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
使用它,查找效率肯定是 O(log n)。不过,为了保持树的性质,增添和删除节点的时候,需要做额外的旋转操作,这会牺牲掉 O(log n) 的时间
分为4中情况
1.左左旋转
5 节点失去了平衡,因为在左子树增加的一个新节点 0,0 在左子树 3 的左孩子上增加的,需要左左旋转,旋转的结果为:
2. 右右旋转
9 是在右子树的右子树增加的节点,导致数不平衡,右右旋转:
3. 左右旋转
新增的3节点,在左子树的右子树上。需要两次旋转,以2为根,做右右旋转,再以5为根做左左旋转:
4. 右左旋转,先右旋转,再左旋转。不画图了
下面是代码,为了方便观察,使用了graphviz画图,需要安装,保存的文件名为:当前目录的tree.png,
如果没有安装graphviz,注释掉 tree.draw()
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <queue>
#include <list>
template <typename T>
struct stTreeNode
{
T d;
int height;
stTreeNode<T> *left;
stTreeNode<T> *right;
stTreeNode(T data):d(data),left(NULL),right(NULL) {}
};
template <typename T>
class CBTree
{
public:
typedef T value_type;
typedef T* value_pointer;
typedef T& value_reference;
typedef const T& const_value_reference;
typedef stTreeNode<T> node_type;
typedef node_type* node_pointer;
public:
CBTree():root(NULL) {}
CBTree(value_pointer arr, int len);
void insertData(const_value_reference data) { _insertData(&root, data); }
void deleteData(const_value_reference data) { _deleteData(&root, data); }
void preorderTravel() { _preorderTravel(root); }
void inorderTravel() { _inorderTravel(root); }
void draw();
private:
node_pointer root;
private:
int getHeight(node_pointer node);
void LL(node_pointer *node);
void LR(node_pointer *node);
void RR(node_pointer *node);
void RL(node_pointer *node);
void _insertData(node_pointer *node, const_value_reference data);
void _deleteData(node_pointer *node, const_value_reference data);
void _preorderTravel(node_pointer root);
void _inorderTravel(node_pointer root);
};
template <typename T>
void CBTree<T>::_inorderTravel(node_pointer root)
{
if (root)
{
_inorderTravel(root->left);
std::cout << root->d << " ";
_inorderTravel(root->right);
}
}
template <typename T>
void CBTree<T>::_preorderTravel(node_pointer root)
{
if (root)
{
std::cout << root->d << " ";
_preorderTravel(root->left);
_preorderTravel(root->right);
}
}
template <typename T>
CBTree<T>::CBTree(value_pointer arr, int len)
{
root = NULL;
for (int i = 0; i < len; ++i)
{
_insertData(&root, arr[i]);
}
}
template <typename T>
int CBTree<T>::getHeight(node_pointer node)
{
return node == NULL ? 0 : node->height;
}
template <typename T>
void CBTree<T>::LL(node_pointer *node)
{
node_pointer q = (*node)->left;
(*node)->left = q->right;
q->right = *node;
(*node)->height = (getHeight((*node)->left) > getHeight((*node)->right) ? getHeight((*node)->left) : getHeight((*node)->right)) + 1;
q->height = (getHeight(q->left) > getHeight(q->right) ? getHeight(q->left) : getHeight(q->right)) + 1;
*node = q;
}
template <typename T>
void CBTree<T>::RR(node_pointer *node)
{
node_pointer q = (*node)->right;
(*node)->right = q->left;
q->left = *node;
(*node)->height = (getHeight((*node)->left) > getHeight((*node)->right) ? getHeight((*node)->left) : getHeight((*node)->right)) + 1;
q->height = (getHeight(q->left) > getHeight(q->right) ? getHeight(q->left) : getHeight(q->right)) + 1;
*node = q;
}
template <typename T>
void CBTree<T>::LR(node_pointer *node)
{
RR(&(*node)->left);
LL(node);
}
template <typename T>
void CBTree<T>::RL(node_pointer *node)
{
LL(&(*node)->right);
RR(node);
}
template <typename T>
void CBTree<T>::_insertData(node_pointer *node, const_value_reference data)
{
if (*node == NULL)
{
*node = new node_type(data);
(*node)->height = 1;
}
else if (data < (*node)->d)
{
_insertData(&(*node)->left, data);
if (getHeight((*node)->left) - getHeight((*node)->right) > 1)
{
node_pointer left = (*node)->left;
if (getHeight(left->left) > getHeight(left->right))
{
LL(node);
}
else
{
LR(node);
}
}
(*node)->height = (getHeight((*node)->left) > getHeight((*node)->right) ? getHeight((*node)->left) : getHeight((*node)->right)) + 1;
}
else
{
_insertData(&(*node)->right, data);
if (getHeight((*node)->right) - getHeight((*node)->left) > 1)
{
node_pointer right = (*node)->right;
if (getHeight(right->right) > getHeight(right->left))
{
RR(node);
}
else
{
RL(node);
}
}
(*node)->height = (getHeight((*node)->left) > getHeight((*node)->right) ? getHeight((*node)->left) : getHeight((*node)->right)) + 1;
}
}
template <typename T>
void CBTree<T>::_deleteData(node_pointer *node, const_value_reference data)
{
if (*node != NULL)
{
if (data == (*node)->d)
{
// 左子树深度大,把左子树最大值补过来
if ((*node)->left && getHeight((*node)->left) >= getHeight((*node)->right))
{
node_pointer tmp = (*node)->left;
node_pointer parent = (*node)->left;
while (tmp->right != NULL)
{
parent = tmp;
tmp = tmp->right;
}
(*node)->d = tmp->d;
// (*node)->left是叶子节点
if (parent == tmp)
{
delete (*node)->left;
(*node)->left = NULL;
}
else
{
parent->right = tmp->left;
delete tmp;
}
}
// 右子树深度大,把右子树最小值补过来
else if ((*node)->right && getHeight((*node)->left) < getHeight((*node)->right))
{
node_pointer tmp = (*node)->right;
node_pointer parent = (*node)->right;
while (tmp->left != NULL)
{
parent = tmp;
tmp = tmp->left;
}
(*node)->d = tmp->d;
if (parent == tmp)
{
delete (*node)->right;
(*node)->right = NULL;
}
else
{
parent->left = tmp->right;
delete tmp;
}
}
// 要删除的节点是叶子节点
else
{
delete *node;
*node = NULL;
}
}
else if (data < (*node)->d)
{
_deleteData(&(*node)->left, data);
}
else
{
_deleteData(&(*node)->right, data);
}
// 调整
if (*node)
{
if (getHeight((*node)->left) - getHeight((*node)->right) > 1)
{
node_pointer left = (*node)->left;
if (getHeight(left->left) > getHeight(left->right))
{
LL(node);
}
else
{
LR(node);
}
}
else if (getHeight((*node)->right) - getHeight((*node)->left) > 1)
{
node_pointer right = (*node)->right;
if (getHeight(right->right) > getHeight(right->left))
{
RR(node);
}
else
{
RL(node);
}
}
}
if (*node)
{
(*node)->height = 1 + (getHeight((*node)->left) > getHeight((*node)->right) ? getHeight((*node)->left) : getHeight((*node)->right));
}
}
}
template <typename T>
void CBTree<T>::draw()
{
std::queue<node_pointer, std::list<node_pointer> > Q;
if (root)
{
Q.push(root);
}
FILE *pf = fopen("bt.dot", "w+");
if (pf)
{
fprintf(pf, "graph btree {\n");
while (!Q.empty())
{
node_pointer node = Q.front();
Q.pop();
if (node->left)
{
fprintf(pf, "\t%d -- %d[color=\"red\"];\n", node->d, node->left->d);
Q.push(node->left);
}
if (node->right)
{
fprintf(pf, "\t%d -- %d[color=\"blue\"];\n", node->d, node->right->d);
Q.push(node->right);
}
}
fprintf(pf, "}\n");
fclose(pf);
}
system("dot bt.dot -Tpng -o tree.png");
}
int main()
{
int arr[] = {23,5,6,1,3,2,34,67,12,52,82,31,78,95};
int len = sizeof(arr)/sizeof(int);
CBTree<int> tree(arr, len);
tree.insertData(98);
tree.insertData(99);
tree.insertData(10);
tree.deleteData(99);
tree.deleteData(95);
tree.deleteData(6);
// tree.deleteData(2);
// tree.deleteData(5);
// tree.deleteData(12);
// tree.deleteData(78);
// tree.deleteData(34);
// tree.deleteData(67);
// tree.deleteData(98);
// tree.deleteData(6);
tree.draw();
return 0;
}
原文:https://www.cnblogs.com/zuofaqi/p/9919345.html