一、背景
Titanic: Machine Learning from Disaster-https://www.kaggle.com/c/titanic/data,必须先登录kaggle
就是那个大家都熟悉的『Jack and Rose』的故事,豪华游艇倒了,大家都惊恐逃生,可是救生艇的数量有限,无法人人都有,副船长发话了『 lady and kid first!』,所以是否获救其实并非随机,而是基于一些背景有rank先后的。
训练和测试数据是一些乘客的个人信息以及存活状况,要尝试根据它生成合适的模型并预测其他人的存活状况。
观察train数据发现总共有12列,其中Survived字段表示的是该乘客是否获救,其余都是乘客的个人信息,包括:
其中测试集示例如下:


二、代码分析-参考别人的决策树相关算法——XGBoost原理分析及实例实现(三)
2.1 查看数据的整体信息
可以看看哪些各个列变量的缺失值情况,比如Age,Cabin
import pandas as pd import numpy as np train_file = "train.csv" test_file = "test.csv" test_result_file = "gender_submission.csv" train = pd.read_csv(train_file) test = pd.read_csv(test_file) test_y = pd.read_csv(test_result_file)#test也有标签,用于核对模型对test数据预测的结果好坏 full_data = [train,test] print(train.info()) ‘‘‘ <class ‘pandas.core.frame.DataFrame‘> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): PassengerId 891 non-null int64 Survived 891 non-null int64 Pclass 891 non-null int64 Name 891 non-null object Sex 891 non-null object Age 714 non-null float64 SibSp 891 non-null int64 Parch 891 non-null int64 Ticket 891 non-null object Fare 891 non-null float64 Cabin 204 non-null object Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.6+ KB ‘‘‘
2.2 根据train.csv中各个Variable的取值和特性进行数据处理
主要查看数据的各个Variable对Survived的影响来确定是否该Variable对生还有影响
1.PassengerId 和 Survived:PassengerId是各个乘客的ID,每个ID号各不相同,基本没有什么数据挖掘意义,对需要预测的存活性几乎没有影响。
2.Pclass:为船票类型,离散数据(不需要进行特别处理),没有缺失值。该变量的取值情况如下
###### in print (train[‘Pclass‘].value_counts(sort=False).sort_index()) ###### out 1 216 2 184 3 491 ###### Pclass和Survived的影响 #计算出每个Pclass属性的取值中存活的人的比例 print train[[‘Pclass‘,‘Survived‘]].groupby(‘Pclass‘,as_index=False).mean() #巧妙的利用groupby().mean()函数,如Pclass == 1中有4个1(存活),1个0(死亡),则mean()后4个1的和/5个 = 0.8 ###### out Pclass Survived 0 1 0.629630 1 2 0.472826 2 3 0.242363
从输出的生还率可以看出,不同的Pclass类型对生还率影响还是很大的,所以选取该属性作为最终的模型的特征之一,取值为1,2,3
3.Sex 性别,连续型数据特征,没有缺失值。该变量的取值情况如下
###### in
print (train[‘Sex‘].value_counts(sort=False).sort_index())
###### out
female 314
male 577
###### Sex和Survived的影响
#计算出每个Sex属性的取值中存活的人的比例
print train[[‘Sex‘,‘Survived‘]].groupby(‘Sex‘,as_index=False).mean()
###### out
Sex Survived
0 female 0.742038
1 male 0.188908
从输出的生还率可以看出,不同的Sex类型对生还率影响还是很大的,所以选取该属性作为最终的模型.对于字符串数据特征值的处理,可以将两个字符串值映射到两个数值0,1上。
4.Age 年龄是连续型数据,该属性包含较多的缺失值,不宜删除缺失值所在的行的数据记录。此处不仅需要对缺失值进行处理,而且需要对该连续型数据进行处理。
对于该属性的缺失值处理:
方法一,默认填充值的范围[(mean - std) ,(mean + std)]。
方法二,将缺失的Age当做label,将其他列的属性当做特征,通过已有的Age的记录训练模型,来预测缺失的Age值。
对该连续型数据进行处理:常用的方法有两种:
方法一,等距离划分。
方法二,通过卡方检验/信息增益/GINI系数寻找差异较大的分裂点
###对于该属性的缺失值处理方式一,方式二在最终的代码仓库中
for dataset in full_data:
age_avg = dataset[‘Age‘].mean()
age_std = dataset[‘Age‘].std()
age_null_count = dataset[‘Age‘].isnull().sum()
age_default_list = np.random.randint(low=age_avg-age_std,high=age_avg+age_std,size=age_null_count)
dataset[‘Age‘][np.isnan(dataset[‘Age‘])] = age_default_list
dataset[‘Age‘] = dataset[‘Age‘].astype(int)
###对该连续型数据进行处理方式二
train[‘CategoricalAge‘] = pd.cut(train[‘Age‘], 5)
print (train[[‘CategoricalAge‘, ‘Survived‘]].groupby([‘CategoricalAge‘], as_index=False).mean())
###### out
CategoricalAge Survived
0 (-0.08, 16.0] 0.532710
1 (16.0, 32.0] 0.360802
2 (32.0, 48.0] 0.360784
3 (48.0, 64.0] 0.434783
4 (64.0, 80.0] 0.090909
可以看出对连续型特征Age离散化处理后,各个年龄阶段的存活率还是有差异的,所以可以选取CategoricalAge作为最终模型的一个特征
5.SibSp and Parch:SibSp和Parch分别为同船的兄弟姐妹和父母子女数,离散数据,没有缺失值。于是可以根据该人的家庭情况组合出不同的特征
###### SibSp对Survived的影响
print train[[‘SibSp‘,‘Survived‘]].groupby(‘SibSp‘,as_index=False).mean()
###### Parch对Survived的影响
print train[[‘Parch‘,‘Survived‘]].groupby(‘Parch‘,as_index=False).mean()
###### Parch和SibSp组合对Survived的影响
for dataset in full_data:
dataset[‘FamilySize‘] = dataset[‘SibSp‘] + dataset[‘Parch‘] + 1
print (train[[‘FamilySize‘, ‘Survived‘]].groupby([‘FamilySize‘], as_index=False).mean())
###### 是否为一个人IsAlone对Survived的影响
train[‘IsAlone‘] = 0
train.loc[train[‘FamilySize‘]==1,‘IsAlone‘] = 1
#或者通过下面的代码来个Alone赋值为1
train[‘IsAlone‘][train[‘FamilySize‘] == 1] = 1
print (train[[‘IsAlone‘, ‘Survived‘]].groupby([‘IsAlone‘],
as_index=False).mean())
###### out 1
SibSp Survived
0 0 0.345395
1 1 0.535885
2 2 0.464286
3 3 0.250000
4 4 0.166667
5 5 0.000000
6 8 0.000000
###### out 2
Parch Survived
0 0 0.343658
1 1 0.550847
2 2 0.500000
3 3 0.600000
4 4 0.000000
5 5 0.200000
6 6 0.000000
###### out 3
0 1 0.303538
1 2 0.552795
2 3 0.578431
3 4 0.724138
4 5 0.200000
5 6 0.136364
6 7 0.333333
7 8 0.000000
8 11 0.000000
###### out 4
IsAlone Survived
0 0 0.505650
1 1 0.303538
从输出的生还率可以看出,可以选取的模型特征有Parch和SibSp组合特征FamilySize,Parch,SibSp,IsAlone该四个特征的取值都为离散值
6.Ticket和Cabin:Ticket为船票号码,每个ID的船票号不同,难以进行数据挖掘,所以该列可以舍弃。Cabin为客舱号码,并且对于891条数据记录来说,其缺失值较多,缺失巨大,难以进行填充或者说进行缺失值补充带来的噪音将更多,所以考虑放弃该列
7.Fare:Fare为船票售价,连续型数据,没有缺失值,需要对该属性值进行离散化处理
for dataset in full_data:
dataset[‘Fare‘] = dataset[‘Fare‘].fillna(train[‘Fare‘].median())
train[‘CategoricalFare‘] = pd.qcut(train[‘Fare‘],6)
print (train[[‘CategoricalFare‘, ‘Survived‘]].groupby([‘CategoricalFare‘], as_index=False).mean())
###### out
CategoricalFare Survived
0 (-0.001, 7.775] 0.205128
1 (7.775, 8.662] 0.190789
2 (8.662, 14.454] 0.366906
3 (14.454, 26.0] 0.436242
4 (26.0, 52.369] 0.417808
5 (52.369, 512.329] 0.697987
可以看出对连续型特征Fare离散化处理后,各个票价阶段的存活率还是有差异的,所以可以选取CategoricalFare作为最终模型的一个特征。此时分为了6个等样本数阶段
8.Embarked:Embarked是终点城市,字符串型特征值,缺失数极小,所以这里考虑使用该属性最多的值填充
print (train[‘Embarked‘].value_counts(sort=False).sort_index())
###### out
C 168
Q 77
S 644
Name: Embarked, dtype: int64
#### 填充和探索Embarked对Survived的影响
for data in full_data:
data[‘Embarked‘] = data[‘Embarked‘].fillna(‘S‘)
print (train[‘Embarked‘].value_counts(sort=False).sort_index())
print (train[[‘Embarked‘, ‘Survived‘]].groupby([‘Embarked‘], as_index=False).mean())
###### out1
C 168
Q 77
S 646
Name: Embarked, dtype: int64
Embarked Survived
0 C 0.553571
1 Q 0.389610
2 S 0.339009
可以看出不同的Embarked类型对存活率的影响有差异,所以可以选择该列作为最终模型的特征,由于该属性的值是字符型,还需要进行映射处理或者one-hot处理。
9.Name:Name为姓名,字符型特征值,没有缺失值,需要对字符型特征值进行处理。但是观察到Name的取值都是不相同,但其中发现Name的title name是存在类别的关系的。于是可以对Name进行提取出称呼这一类别title name
import re
def get_title_name(name):
title_s = re.search(‘ ([A-Za-z]+)\.‘, name)
if title_s:
return title_s.group(1)
return ""
for dataset in full_data:
dataset[‘TitleName‘] = dataset[‘Name‘].apply(get_title_name)
print(pd.crosstab(train[‘TitleName‘],train[‘Sex‘]))
###### out
Sex female male
TitleName
Capt 0 1
Col 0 2
Countess 1 0
Don 0 1
Dr 1 6
Jonkheer 0 1
Lady 1 0
Major 0 2
Master 0 40
Miss 182 0
Mlle 2 0
Mme 1 0
Mr 0 517
Mrs 125 0
Ms 1 0
Rev 0 6
Sir 0 1
####可以看出不同的titlename中男女还是有区别的。进一步探索titlename对Survived的影响。
####看出上面的离散取值范围还是比较多,所以可以将较少的几类归为一个类别。
train[‘TitleName‘] = train[‘TitleName‘].replace(‘Mme‘, ‘Mrs‘)
train[‘TitleName‘] = train[‘TitleName‘].replace(‘Mlle‘, ‘Miss‘)
train[‘TitleName‘] = train[‘TitleName‘].replace(‘Ms‘, ‘Miss‘)
train[‘TitleName‘] = train[‘TitleName‘].replace([‘Lady‘, ‘Countess‘,‘Capt‘, ‘Col‘, ‘Don‘, ‘Dr‘, ‘Major‘, ‘Rev‘, ‘Sir‘, ‘Jonkheer‘, ‘Dona‘], ‘Other‘)
print (train[[‘TitleName‘, ‘Survived‘]].groupby(‘TitleName‘, as_index=False).mean())
###### out1
TitleName Survived
0 Master 0.575000
1 Miss 0.702703
2 Mr 0.156673
3 Mrs 0.793651
4 Other 0.347826
可以看出TitleName对存活率还是有影响差异的,TitleName总共为了5个类别:Mrs,Miss,Master,Mr,Other。
2.3 特征提取总结
此赛题是计算每一个属性与响应变量label的影响(存活率)来查看是否选择该属性作为最后模型的输入特征。最后选取出的模型输入特征有Pclass,Sex,CategoricalAge,FamilySize,Parch,SibSp,IsAlone,CategoricalFare,Embarked,TitleName,最后对上述分析进行统一的数据清洗,将train.csv和test.csv统一进行处理,得出新的模型训练样本集。
三、XGBoost模型训练
3.1数据清洗和特征选择
此步骤主要是根据3中的数据分析来进行编写的。着重点Age的缺失值使用了两种方式进行填充。均值和通过其他清洗的数据特征使用随机森林预测缺失值两种方式。
def Passenger_sex(x):
sex = {‘female‘:0, ‘male‘:1}
return sex[x]
def Passenger_Embarked(x):
Embarked = {‘S‘:0, ‘C‘:1, ‘Q‘:2}
return Embarked[x]
def Passenger_TitleName(x):
TitleName = {‘Mr‘:0,‘Miss‘:1, ‘Mrs‘:2, ‘Master‘:3, ‘Other‘:4}
return TitleName[x]
def get_title_name(name):
title_s = re.search(‘ ([A-Za-z]+)\.‘, name)
if title_s:
return title_s.group(1)
return ""
def data_feature_engineering(full_data,age_default_avg=True,one_hot=True):
"""
:param full_data:全部数据集包括train,test
:param age_default_avg:age默认填充方式,是否使用平均值进行填充
:param one_hot: Embarked字符处理是否是one_hot编码还是映射处理
:return: 处理好的数据集
"""
for dataset in full_data:
# Pclass、Parch、SibSp不需要处理
# sex 0,1
dataset[‘Sex‘] = dataset[‘Sex‘].map(Passenger_sex).astype(int)
# FamilySize
dataset[‘FamilySize‘] = dataset[‘SibSp‘] + dataset[‘Parch‘] + 1
# IsAlone
dataset[‘IsAlone‘] = 0
isAlone_mask = dataset[‘FamilySize‘] == 1
dataset.loc[isAlone_mask, ‘IsAlone‘] = 1
# Fare 离散化处理,6个阶段
fare_median = dataset[‘Fare‘].median()
dataset[‘CategoricalFare‘] = dataset[‘Fare‘].fillna(fare_median)
dataset[‘CategoricalFare‘] = pd.qcut(dataset[‘CategoricalFare‘],6,labels=[0,1,2,3,4,5])
# Embarked映射处理,one-hot编码,极少部分缺失值处理
dataset[‘Embarked‘] = dataset[‘Embarked‘].fillna(‘S‘)
dataset[‘Embarked‘] = dataset[‘Embarked‘].astype(str)
if one_hot:
# 因为OneHotEncoder只能编码数值型,所以此处使用LabelBinarizer进行独热编码
Embarked_arr = LabelBinarizer().fit_transform(dataset[‘Embarked‘])
dataset[‘Embarked_0‘] = Embarked_arr[:, 0]
dataset[‘Embarked_1‘] = Embarked_arr[:, 1]
dataset[‘Embarked_2‘] = Embarked_arr[:, 2]
dataset.drop(‘Embarked‘,axis=1,inplace=True)
else:
# 字符串映射处理
dataset[‘Embarked‘] = dataset[‘Embarked‘].map(Passenger_Embarked).astype(int)
# Name选取称呼Title_name
dataset[‘TitleName‘] = dataset[‘Name‘].apply(get_title_name)
dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Mme‘, ‘Mrs‘)
dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Mlle‘, ‘Miss‘)
dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Ms‘, ‘Miss‘)
dataset[‘TitleName‘] = dataset[‘TitleName‘].replace([‘Lady‘, ‘Countess‘, ‘Capt‘, ‘Col‘, ‘Don‘, ‘Dr‘, ‘Major‘, ‘Rev‘, ‘Sir‘, ‘Jonkheer‘, ‘Dona‘],
‘Other‘)
dataset[‘TitleName‘] = dataset[‘TitleName‘].map(Passenger_TitleName).astype(int)
# age —— 缺失值,分段处理
if age_default_avg:
# 缺失值使用avg处理
age_avg = dataset[‘Age‘].mean()
age_std = dataset[‘Age‘].std()
age_null_count = dataset[‘Age‘].isnull().sum()
age_default_list = np.random.randint(low=age_avg - age_std, high=age_avg + age_std, size=age_null_count)
dataset.loc[np.isnan(dataset[‘Age‘]), ‘Age‘] = age_default_list
dataset[‘Age‘] = dataset[‘Age‘].astype(int)
else:
# 将age作为label,预测缺失的age
# 特征为 TitleName,Sex,pclass,SibSP,Parch,IsAlone,CategoricalFare,FamileSize,Embarked
feature_list = [‘TitleName‘, ‘Sex‘, ‘Pclass‘, ‘SibSp‘, ‘Parch‘, ‘IsAlone‘,‘CategoricalFare‘,
‘FamilySize‘, ‘Embarked‘,‘Age‘]
if one_hot:
feature_list.append(‘Embarked_0‘)
feature_list.append(‘Embarked_1‘)
feature_list.append(‘Embarked_2‘)
feature_list.remove(‘Embarked‘)
Age_data = dataset.loc[:,feature_list]
un_Age_mask = np.isnan(Age_data[‘Age‘])
Age_train = Age_data[~un_Age_mask] #要训练的Age
# print(Age_train.shape)
feature_list.remove(‘Age‘)
rf0 = RandomForestRegressor(n_estimators=60,oob_score=True,min_samples_split=10,min_samples_leaf=2,
max_depth=7,random_state=10)
rf0.fit(Age_train[feature_list],Age_train[‘Age‘])
def set_default_age(age):
if np.isnan(age[‘Age‘]):
data_x = np.array(age.loc[feature_list]).reshape(1,-1)
age_v = round(rf0.predict(data_x))
#age_v = np.round(rf0.predict(data_x))[0]
return age_v
return age[‘Age‘]
dataset[‘Age‘] = dataset.apply(set_default_age, axis=1)
# pd.cut与pd.qcut的区别,前者是根据取值范围来均匀划分,
# 后者是根据取值范围的各个取值的频率来换分,划分后的某个区间的频率数相同
# print(dataset.tail())
dataset[‘CategoricalAge‘] = pd.cut(dataset[‘Age‘], 5,labels=[0,1,2,3,4])
return full_data
##特征选择
def data_feature_select(full_data):
"""
:param full_data:全部数据集
:return:
"""
for data_set in full_data:
drop_list = [‘PassengerId‘,‘Name‘,‘Age‘,‘Fare‘,‘Ticket‘,‘Cabin‘]
data_set.drop(drop_list,axis=1,inplace=True)
train_y = np.array(full_data[0][‘Survived‘])
train = full_data[0].drop(‘Survived‘,axis=1,inplace=False)
# print(train.head())
train_X = np.array(train)
test_X = np.array(full_data[1])
return train_X,train_y,test_X
4.2XGBoost参数介绍
要熟练的使用XGBoost库一方面需要对XGBoost原理的了解,另一方面需要对XGBoost库的API参数的了解,通用参数
booster[默认gbtree]:选择每次迭代的模型
gbtree:基于树的模型
gbliner:线性模型
nthread:[默认值为最大可能的线程数]
这个参数用来进行多线程控制,应当输入系统的核数。
如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。
booster:尽管有两种booster可供选择,这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到
learning_rate:梯度下降的学习率,一般为0.01~0.2
min_child_weight:决定最小叶子节点样本权重和,这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本;但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整
max_depth:决策树的最大深度,默认为6,这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本;需要使用CV函数来进行调优,典型值:3-10
max_leaf_nodes:树上最大的叶子数量
gamma:在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的
subsample和colsample_bytree:随机森林中的两种随机,也是XGBoost中的trick,用于防止过拟合,值为0.5~1,随机采样所占比例,随机列采样比例。
lambda:L2正则化项,可调参实现。
scale_pos_weight:在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。
学习目标函数
objective:指定分类回归问题。如binary:logistic
eval_metric:评价指标
seeds:随机数种子,调整参数时,随机取同样的样本集
#coding = utf-8
import pandas as pd
import numpy as np
import re
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelBinarizer
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
import matplotlib.pylab as plt
#https://github.com/JianWenJun/MLDemo/blob/master/ML/DecisionTree/xgboost_demo.py
#数据清洗和特征选择
##此步骤主要是根据数据分析来进行编写的。着重点Age的缺失值使用了两种方式进行填充。均值和通过其他清洗的数据特征使用随机森林预测缺失值两种方式。
def data_feature_engineering(full_data, age_default_avg=True, one_hot=True):
"""
:param full_data:全部数据集,包括train,test
:param age_default_avg: age默认填充方式,是否使用平均值进行填充
:param one_hot: Embarked字符处理是否是one_hot编码还是映射处理
:return:处理好的数据集
"""
for dataset in full_data:
#Pclass,Parch,SibSp不需要处理
#sex 0,1
dataset[‘Sex‘] = dataset[‘Sex‘].map(Passenger_sex).astype(int)
#FamilySize
dataset[‘FamilySize‘] = dataset[‘SibSp‘] + dataset[‘Parch‘] + 1
#IsAlone
dataset[‘IsAlone‘] = 0
isAlone_mask = dataset[‘FamilySize‘] == 1
dataset.loc[isAlone_mask,‘IsAlone‘] = 1
#Fare离散化处理,6个阶段
fare_median = dataset[‘Fare‘].median()
dataset[‘CategoricalFare‘] = dataset[‘Fare‘].fillna(fare_median)
dataset[‘CategoricalFare‘] = pd.qcut(dataset[‘CategoricalFare‘],6,labels=[0,1,2,3,4,5])
#Embarked 映射处理, one-hot 编码,极少部分缺失值处理
dataset[‘Embarked‘] = dataset[‘Embarked‘].fillna(‘S‘)
dataset[‘Embarked‘] = dataset[‘Embarked‘].astype(str)
if one_hot:
#因为OneHotEncoder只能编码数值型,所以此处使用LabelBinarizer进行独热编码
Embarked_arr = LabelBinarizer().fit_transform(dataset[‘Embarked‘])
dataset[‘Embarked_0‘] = Embarked_arr[:, 0]
dataset[‘Embarked_1‘] = Embarked_arr[:, 1]
dataset[‘Embarked_2‘] = Embarked_arr[:, 2]
dataset.drop(‘Embarked‘, axis=1, inplace=True)
else:
#字符映射处理
dataset[‘Embarked‘] = dataset[‘Embarked‘].map(Passenger_Embarked).astype(int)
#Name选取称呼Title_name
dataset[‘TitleName‘] = dataset[‘Name‘].apply(get_title_name)
dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Mme‘,‘Mrs‘)
dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Mlle‘, ‘Miss‘)
dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Ms‘, ‘Miss‘)
dataset[‘TitleName‘] = dataset[‘TitleName‘].replace([‘Lady‘, ‘Countess‘, ‘Capt‘, ‘Col‘, ‘Don‘, ‘Dr‘, ‘Major‘, ‘Rev‘, ‘Sir‘, ‘Jonkheer‘, ‘Dona‘],
‘Other‘)
dataset[‘TitleName‘] = dataset[‘TitleName‘].map(Passenger_TitleName).astype(int)
#age 缺失值,分段处理
if age_default_avg:
#缺失值使用avg处理
age_avg = dataset[‘Age‘].mean()
age_std = dataset[‘Age‘].std()
age_null_count = dataset[‘Age‘].isnull().sum()
age_default_list = np.random.randint(low=age_avg-age_std, high=age_avg+age_std, size=age_null_count)
dataset.loc[np.isnan(dataset[‘Age‘]),‘Age‘] = age_default_list
dataset[‘Age‘] = dataset[‘Age‘].astype(int)
else:
#将age作为label,预测缺失的age
#特征为TitleName,Sex,pclass,SibSP,Parch,IsAlone,CategoricalFare,FamileSize,Embarked
feature_list = [‘TitleName‘, ‘Sex‘, ‘Pclass‘, ‘SibSp‘, ‘Parch‘, ‘IsAlone‘, ‘CategoricalFare‘,
‘FamilySize‘, ‘Embarked‘, ‘Age‘]
if one_hot:
feature_list.append(‘Embarked_0‘)
feature_list.append(‘Embarked_1‘)
feature_list.append(‘Embarked_2‘)
feature_list.remove(‘Embarked‘)
Age_data = dataset.loc[:, feature_list]
un_Age_mask = np.isnan(Age_data[‘Age‘])
Age_train = Age_data[~un_Age_mask]#要训练的Age
#print(Age_train.shape)
feature_list.remove(‘Age‘)
rf0 = RandomForestRegressor(n_estimators=60, oob_score=True, min_samples_split=10, min_samples_leaf=2, max_depth=7, random_state=10)
rf0.fit(Age_train[feature_list], Age_train[‘Age‘])
def set_default_age(age):
if np.isnan(age[‘Age‘]):
data_x = np.array(age.loc[feature_list]).reshape(1,-1)
age_v = round(rf0.predict(data_x))
return age_v
return age[‘Age‘]
dataset[‘Age‘] = dataset.apply(set_default_age, axis=1)
# pd.cut与pd.qcut的区别,前者是根据取值范围来均匀划分
# 后者是根据取值范围的各个取值的频率来换分,划分后的某个区间的频率数相同
# print(dataset.tail())
dataset[‘CategoricalAge‘] = pd.cut(dataset[‘Age‘], 5, labels=[0,1,2,3,4])
return full_data
##特征选择
def data_feature_select(full_data):
"""
:param full_data:全部数据集
:return:
"""
for data_set in full_data:
drop_list = [‘PassengerId‘, ‘Name‘, ‘Age‘, ‘Fare‘, ‘Ticket‘, ‘Cabin‘]
data_set.drop(drop_list, axis=1, inplace=True)
train_y = np.array(full_data[0][‘Survived‘])
train = full_data[0].drop(‘Survived‘, axis=1, inplace=False)
train_X = np.array(train)
test_X = np.array(full_data[1])
return train_X, train_y, test_X
def Passenger_sex(x):
sex = {‘female‘:0, ‘male‘:1}
return sex[x]
def Passenger_Embarked(x):
Embarked = {‘S‘:0, ‘C‘:1, ‘Q‘:2}
return Embarked[x]
def Passenger_TitleName(x):
TitleName = {‘Mr‘:0,‘Miss‘:1, ‘Mrs‘:2, ‘Master‘:3, ‘Other‘:4}
return TitleName[x]
def get_title_name(name):
title_s = re.search(‘ ([A-Za-z]+)\.‘, name)
if title_s:
return title_s.group(1)
return ""
def modelfit(alg,dtrain_x,dtrain_y,useTrainCV=True,cv_flods=5,early_stopping_rounds=50):
"""
:param alg: 初始模型
:param dtrain_x:训练数据X
:param dtrain_y:训练数据y(label)
:param useTrainCV: 是否使用cv函数来确定最佳n_estimators
:param cv_flods:交叉验证的cv数
:param early_stopping_rounds:在该数迭代次数之前,eval_metric都没有提升的话则停止
"""
if useTrainCV:
xgb_param = alg.get_xgb_params()
xgtrain = xgb.DMatrix(dtrain_x,dtrain_y)
cv_result = xgb.cv(xgb_param,xgtrain,num_boost_round = alg.get_params()[‘n_estimators‘],
nfold = cv_flods, metrics = ‘auc‘, early_stopping_rounds=early_stopping_rounds)
alg.set_params(n_estimators=cv_result.shape[0])
# train data
alg.fit(train_X,train_y,eval_metric=‘auc‘)
#predict train data
train_y_pre = alg.predict(train_X)
print ("\nModel Report")
print ("Accuracy : %.4g" % metrics.accuracy_score(train_y, train_y_pre))
feat_imp = pd.Series(alg.get_booster().get_fscore()).sort_values(ascending=False)
feat_imp.plot(kind = ‘bar‘,title=‘Feature Importance‘)
plt.ylabel(‘Feature Importance Score‘)
plt.show()
def xgboost_change_param(train_X, train_y):
######Xgboost 调参########
#step1 确定学习速率和迭代次数n_estimators
xgb1 = XGBClassifier(learning_rate=0.1,
booster=‘gbtree‘,
n_estimators=300,
max_depth=4,
min_child_weight=1,
gamma=0,
subsample=0.8,
colsample_bytree=0.8,
objective=‘binary:logistic‘,
nthread=2,
scale_pos_weight=1,
seed=10)
#最佳n_estimators = 59,learning_rate=0.1
modelfit(xgb1, train_X, train_y, early_stopping_rounds=45)
#step2调试的参数时min_child_weight以及max_depth
param_test1 = {‘max_depth‘:range(3,8,1),
‘min_child_weight‘:range(1,6,2)}
gsearch1 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,
n_estimators=59,
max_depth=4,
min_child_weight=1,
gamma=0,
subsample=0.8,
colsample_bytree=0.8,
objective=‘binary:logistic‘,
nthreads=2,
scale_pos_weight=1,seed=10),
param_grid=param_test1,scoring=‘roc_auc‘,n_jobs=1,cv=5)
gsearch1.fit(train_X,train_y)
print(gsearch1.best_params_, gsearch1.best_score_)
#最佳max_depth = 7, min_child_weight=3
#modelfit(gsearch1.best_estimator_) 最佳模型为:gsearch1.best_estimator_
#step3 gamma参数调优
param_test2 = {‘gamma‘: [i/10.0 for i in range(0,5)]}
gsearch2 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,n_estimators=59,
max_depth=7,min_child_weight=3,gamma=0,
subsample=0.8,colsample_bytree=0.8,
objective=‘binary:logistic‘,nthread=2,
scale_pos_weight=1,seed=10),
param_grid=param_test2,
scoring=‘roc_auc‘,
cv=5)
gsearch2.fit(train_X, train_y)
print(gsearch2.best_params_, gsearch2.best_score_)
#最佳 gamma = 0.3
#modelfit(gsearch2, best_estimator_)
#step4 调整subsample 和 colsample_bytrees参数
param_test3 = {‘subsample‘: [i/10.0 for i in range(6,10)],
‘colsample_bytree‘: [i/10.0 for i in range(6,10)]}
gsearch3 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,n_estimators=59,
max_depth=7,min_child_weight=3,gamma=0.3,
subsample=0.8,colsample_bytree=0.8,
objective=‘binary:logistic‘,nthread=2,
scale_pos_weight=1,seed=10),
param_grid=param_test3,
scoring=‘roc_auc‘,
cv=5
)
gsearch3.fit(train_X, train_y)
print(gsearch3.best_params_, gsearch3.best_score_)
# 最佳‘subsample‘: 0.8, ‘colsample_bytree‘: 0.6
# step5 正则化参数调优
train_file = "C:\\Users\\Administrator\\Desktop\\python\\data\\Titanic\\train.csv"
test_file = "C:\\Users\\Administrator\\Desktop\\python\\data\\Titanic\\test.csv"
test_result_file = "C:\\Users\\Administrator\\Desktop\\python\\data\\Titanic\\gender_submission.csv"
train = pd.read_csv(train_file)
test = pd.read_csv(test_file)
test_y = pd.read_csv(test_result_file)
full_data = [train,test]
full_data = data_feature_engineering(full_data, age_default_avg=True, one_hot=False)
train_X, train_y, test_X = data_feature_select(full_data)
# XGBoost调参
#xgboost_change_param(train_X, train_y)
#parameters at last
xgb1 = XGBClassifier(learning_rate=0.1,n_estimators=59,
max_depth=7,min_child_weight=3,
gamma=0.3,subsample=0.8,
colsample_bytree=0.6, objective=‘binary:logistic‘,
nthread=2, scale_pos_weight=1,seed=10)
xgb1.fit(train_X,train_y)
y_test_pre = xgb1.predict(test_X)
y_test_true = np.array(test_y[‘Survived‘])
print ("the xgboost model Accuracy : %.4g" % metrics.accuracy_score(y_pred=y_test_pre, y_true=y_test_true))
Reference:
https://blog.csdn.net/u014732537/article/details/80055227
https://github.com/JianWenJun/MLDemo/blob/master/ML/DecisionTree/xgboost_demo.py
原文:https://www.cnblogs.com/always-fight/p/9208847.html