Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj .
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.
Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
Sample Input
3 0.04 3 1 0.02 2 0.03 3 0.05 0.06 3 2 0.03 2 0.03 3 0.05 0.10 3 1 0.03 2 0.02 3 0.05
Sample Output
2 4 6
解题思路:
本题是讲抢劫犯母亲帮助抢劫犯计算抢银行,题目给出一个数字T为测试数量,之后给出一行包括两个数字P与N,P为抢劫犯母亲认为安全的最大被抓概率,N为银行数量,之后N行跟随,每行包括两个数字,Mj抢劫这家银行可以获得的钱财,Pj抢劫这家银行被抓的概率,每家银行只能抢一次。要求输出低于抢劫犯母亲预计被抓几率所能获得的最大收益。
我们可以计算出抢劫银行的所有获利情况所对应的最大逃脱率,1 - 最大逃脱率便是当前获利对应最低被抓率。与抢劫犯母亲的预期进行比较便可以获得最大收益。
基本思路是动态规划01背包问题背包最大容量为抢劫所有银行可以获得的收益,背包内容物价值为逃脱率。
用dp[ j ]记录收益为 j 时的最大逃脱率,这样就可以写出动态转移方程:
dp[ j ] = max(dp[ j ], dp[ j - p[ i ] ] * (1 - m[ i ])
之后遍历dp找到被抓率低于抢劫犯母亲预计的最大收益即可。
1 #include <bits/stdc++.h> 2 using namespace std; 3 const int maxn = 100 * 100; 4 //整个程序中最大的数组为dp其元素个数最多为最多银行个数乘以最大获益金额 5 int money[maxn]; //money保存抢劫每个银行的收益 6 double probability[maxn]; //probability保存抢劫每个银行被抓概率 7 double dp[maxn]; //dp保存每个获益金额对应的最高逃脱率 8 int main() 9 { 10 int t; 11 while(scanf("%d", &t) != EOF){ //输入测试数量 12 double p; 13 int n, maxMoney = 0; 14 scanf("%lf%d", &p, &n); //输入母亲预计值与银行数量 15 for(int i = 1; i <= n; i++){ 16 scanf("%d%lf", &money[i], &probability[i]); 17 maxMoney += money[i]; //记录最大获益金额 18 } 19 for(int i = 0; i <= maxMoney; i++){ //初始化dp为0 20 dp[i] = 0; 21 } 22 dp[0] = 1; //不抢银行不会被警察叔叔抓 23 for(int i = 0; i <= n; i++){ //遍历银行 24 for(int j = maxMoney; j >= money[i]; j--){ //01背包逆序遍历背包容量 25 dp[j] = max(dp[j], dp[j - money[i]] *(1 - probability[i])); 26 //动态转移方程 27 } 28 } 29 int ans = 0; 30 for(int i = 0; i <= maxMoney; i++){ 31 //遍历dp找到低于母亲预计值的最大收益 32 if(dp[i] > 1 - p) 33 ans = max(ans, i); 34 } 35 printf("%d\n", ans); 36 } 37 return 0; 38 }
原文:https://www.cnblogs.com/suvvm/p/9944331.html