首页 > 其他 > 详细

人工智能入门(四):uncertainty&基于统计的学习

时间:2018-11-12 10:17:53      阅读:213      评论:0      收藏:0      [点我收藏+]

1.belief networks (indenpendence, collider,conditioning / marginalization,connection graph,independence in belief networks,D-separation,uncertain and unreliable evidence)Belief and Markov Networks

2.inference, general inference(variable elimination,bucket elimination algorithm), message passing idea(sum-product algorithm,`belief propagation‘ or `dynamic programming‘,max-product algorithm,loop-cut conditioning) 

for singly connected graphs: sum-product, max-product;

for multiply connected graphs: loop-cut conditioning, bucket elimination;

3.MAP,ML,(KL Divergence),Naive Bayes Classi er,Using a Beta prior

4.dealing with miss variables: Missing Completely at random (MCAR), Missing at random(MAR),Missing NOT at random (MNAR),Expectation Maximisation(EM algorithm)

5.sampling(univariate,rejection,multi-variate,ancestral, Gibbs, importance, sequential importance,particle filter)

6.dynamical models(HMM(filtering, smoothing,prediction),Viterbi, Kalman, particle Filtering (bootstrap filtering)

人工智能入门(四):uncertainty&基于统计的学习

原文:https://www.cnblogs.com/yizhaoAI/p/9944780.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!