首页 > 编程语言 > 详细

进阶指南---基本算法【阅读笔记】

时间:2018-11-13 12:03:31      阅读:159      评论:0      收藏:0      [点我收藏+]

成对变换

对于非负整数\(n\):

当\(n\)为偶数时,\(n xor 1\)等于\(n+1\)

当\(n\)为奇数时,\(n xor 1\)等于\(n - 1\)

“0 和 1”, “2 和 3”, “4 和5”......关于\(xor 1\)运算构成“成对变换”

这一性质常用于图论邻接表中边集的存储。在具有无向边(双向边)的图中把一对正反方向的边分别存储在邻接表数组的第\(n\)和\(n+1\)位置(\(n\)是偶数)

通过\(xor 1\)运算可以得到当前边和反向边的存储位置。

 

\(lowbit\)

\(lowbit(n)\)定义为非负整数\(n\)在二进制表示下“最低位的1及其后边所有的0”构成的数值。

\(lowbit(n) = n & (~n + 1) = n & (-n)\)

  因为假设\(n\)的第\(k\)位是\(1\), 第\(0~k-1\)位都是\(0\)

  \(~n\)的第\(k\)为是\(0\), 第\(0~k-1\)都是\(1\)

  那么\(~n + 1\)的第\(k\)是\(1\), 第\(0~k-1\)都是\(0\)

  其实根据补码的一种求法也可以知道,\(~n +1\)的高位到第\(k+1\)位都和\(n\)相反,\(0~k\)位不变。

  进行\(&\)运算后得到的就是\(lowbit(n)\)

\(lowbit\)加Hash可以找出整数二进制表示下所有是1的位,复杂度与1的个数同级。只需要每次做\(n = n - lowbit(n)\)的操作

进阶指南---基本算法【阅读笔记】

原文:https://www.cnblogs.com/wyboooo/p/9951397.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!