BFS的思想:
从一个图的某一个顶点V0出发,首先访问和V0相邻的且未被访问过的顶点V1、V2、……Vn,然后依次访问与V1、V2……Vn相邻且未被访问的顶点。如此继续,找到所要找的顶点或者遍历完整个图。
由此可以看出,用BFS进行搜索所搜索的顶点都是按深度进行扩展的,先找到到V0距离为1的所有顶点,然后找到距离V0为2的顶点……所以BFS所搜索到的都是最短的路径。
由于要将距离V0为d(d>0)的且未被方位的点都记录起来,我们采用队列这种数据结构。队列的特点是先进先出(FIFO),从某个顶点出发,记此顶点已访问标记,然后依次搜索和此顶点相邻的且未被访问的顶点,将其加入队列,并置已访问标记,重复此步骤,直到找到需要搜索的顶点或者所有的顶点都被访问为止。
参考代码
void bfs(int k) { int v[N]={0},i; //N表示图的顶点个数 queue<int> q; v[k]=1; //访问标记为1 q.push(k); while(!q.empty()){ k=q.front(); q.pop(); for(i=0;i<N;i++) if(a[k][i]==1&&!v[i]){ //a[k][i]表示顶点k,和i有关系 q.push(i); v[i]=1; } } }
DFS的思想:
顾名思义,深度优先搜索所遵循的策略就是尽可能“深”的在图中进行搜索,对于图中某一个顶点V,如果它还有相邻的顶点(在有向图中就是还有以V为起点的边)且未被访问,则访问此顶点。如果找不到,则返回到上一个顶点。这一过程一直进行直到所有的顶点都被访问为止。 DFS可以搜索出从某一个顶点到另外的一个顶点的所有路径。 由于要进行返回的操作,我们采用的是递归的方法。
int v[N]={0}; void dfs(int k) { v[k]=1; for(i=0;i<N;i++) if(a[k][i]==1&&!v[i]) dfs(i); }
原文:http://www.cnblogs.com/happy-lcj/p/3855446.html