1、隶属函数
几种典型的隶属函数
在Matlab中已经开发出了11种隶属函数,即双S形隶属函数(dsigmf)、联合高斯型隶属函数(gauss2mf)、高斯型隶属函数(gaussmf)、广义钟形隶属函数(gbellmf)、II型隶属函数(pimf)、双S形乘积隶属函数(psigmf)、S状隶属函数(smf)、S形隶属函数(sigmf)、梯形隶属函数(trapmf)、三角形隶属函数(trimf)、Z形隶属函数(zmf)。
有关隶属函数的MATLAB设计,见著作:楼顺天,胡昌华,张伟,《基于MATLAB的系统分析与设计-模糊系统》,西安:西安电子科技大学出版社,2001
例1:设计一个三角形隶属函数,按[-3,3]范围七个等级,建立一个模糊系统,用来表示{负大,负中,负小,零,正小,正中,正大}。仿真结果如图3-8所示。
2、隶属函数的确定方法
隶属函数是模糊控制的应用基础。目前还没有成熟的方法来确定隶属函数,主要还停留在经验和实验的基础上。通常的方法是初步确定粗略的隶属函数,然后通过“学习”和实践来不断地调整和完善。遵照这一原则的隶属函数选择方法有以下几种。
(1)模糊统计法
根据所提出的模糊概念进行调查统计,提出与之对应的模糊集A,通过统计实验,确定不同元素隶属于A的程度。
u0对模糊集A的隶属度 =
(2)主观经验法
当论域为离散论域时,可根据主观认识,结合个人经验,经过分析和推理,直接给出隶属度。这种确定隶属函数的方法已经被广泛应用。
(3)神经网络法
利用神经网络的学习功能,由神经网络自动生成隶属函数,并通过网络的学习自动调整隶属函数的值。
原文:https://www.cnblogs.com/long5683/p/9961149.html