首页 > Web开发 > 详细

论文笔记 Stacked Hourglass Networks for Human Pose Estimation

时间:2018-11-15 11:42:57      阅读:324      评论:0      收藏:0      [点我收藏+]

 Stacked Hourglass Networks for Human Pose Estimation

key words:
人体姿态估计 Human Pose Estimation 给定单张RGB图像,输出人体某些关键点的精确像素位置.
堆叠式沙漏网络 Stacked Hourglass Networks
多尺度特征  Features processed across all scales
特征用于捕捉人体的空间关系 Capture spatial relationships associated with body
中间监督 Intermediate supervision
技术分享图片
图 - Stacked Hourglass Networks由多个 stacked hourglass 模块组成,通过重复进行bottom-up, top-down推断以估计人体姿态.

 

沙漏设计 Hourglass Design

动机:捕捉不同尺度下图片所包含的信息.
局部信息,对于比如脸部、手部等等特征很有必要,而最终的姿态估计需要对整体人体一致理解. 不同尺度下,可能包含了很多有用信息,比如人体的方位、肢体的动作、相邻关节点的关系等等.

Hourglass设计:

技术分享图片

 

图 - 单个hourglass模块示例. 图中个方框分别对应一个residual模块. 整个hourglass中,特征数是一致的.

hourglass设置:
首先Conv层和Max Pooling层用于将特征缩放到很小的分辨率;
每一个Max Pooling(降采样)处,网络进行分叉,并对原来pre-pooled分辨率的特征进行卷积;
得到最低分辨率特征后,网络开始进行upsampling,并逐渐结合不同尺度的特征信息. 这里对较低分辨率采用的是最近邻上采样(nearest neighbor upsampling)方式,将两个不同的特征集进行逐元素相加.
整个hourglass是对称的,获取低分辨率特征过程中每有一个网络层,则在上采样的过程中相应低就会有一个对应网络层.

得到hourglass网络模块输出后,再采用两个连续的 1×1 Conv层进行处理,得到最终的网络输出.
Stacked Hourglass Networks输出heatmaps的集合,每一个heatmap表征了关节点在每个像素点存在的概率.
Residual模块提取了较高层次的特征(卷积路),同时保留了原有层次的信息(跳级路)。不改变数据尺寸,只改变数据深度。可以把它看做一个保尺寸的高级“卷积”层。

中间监督 Intermediate Supervision

技术分享图片

Hourglass网络输出heatmaps集合(蓝色方框部分),与真值进行误差计算。 其中利用1×1的Conv层对heatmaps进行处理并将其添加回特征空间中,作为下一个hourglass model的输入特征。每一个Hourglass网络都添加Loss层.Intermediate Supervision的作用在[2]中提到:如果直接对整个网络进行梯度下降,输出层的误差经过多层反向传播会大幅减小,即发生vanishing gradients现象。 

技术分享图片 
为解决此问题,[2]在每个阶段的输出上都计算损失。这种方法称为intermediate supervision,可以保证底层参数正常更新。 
技术分享图片

 

 

堆栈沙漏与中级监督  Stack Hourglass with Intermediate Supervision

  正如本文开头所示,网络的核心结构为堆叠多个hourglass model,这为网络提供了重复自下而上,自上而下推理的机制,允许重新评估整个图像的初始估计和特征。实现这一过程的核心便是预测中级热度图并让中级热度图参与loss计算。

  如果对单一的Hourglass Model进行Intermediate Supervision,监督放在哪个位置比较合适呢?如果在网络进行上采样后提供监督,那么在更大的全球堆叠沙漏网络人类姿势估计上下文中,无法相对于彼此重新评估这些特征;如果在上采样之前监督,此时,给定像素处的特征是处理相对局部感受野的结果,因此不知道关键的全局线索。本文提供的解决方式是repeated bottom-up,top-down inference with Stacked hourglass(图解在本文文首),通过该方式, the network can maintain precise local information while considering and then reconsidering the overall coherence of the features。

论文笔记 Stacked Hourglass Networks for Human Pose Estimation

原文:https://www.cnblogs.com/z1141000271/p/9962464.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!