首页 > 编程语言 > 详细

java.utils.HashMap数据结构分析(转)

时间:2014-07-30 20:20:14      阅读:399      评论:0      收藏:0      [点我收藏+]
bubuko.com,布布扣
上图为Hashmap的数据结构图,具体实线是采用数组结合链表实现,链表是为了解决在hash过程中因hash值一样导致的碰撞问题。
所以在使用自定义对象做key的时候,一定要去实现hashcode方法,不然hashmap就成了纯粹的链表,查找性能非常的慢,添加节点元素也非常的慢。如
import java.util.HashMap;
import java.util.Map;
public class User {

private String username;

public boolean equals(Object obj) {

User user=(User)obj;

return username.equals(user.username);}

//手动将hashCode 返回一样的值

public int hashCode() {

return 1;

}

public static void main(String args[]){

Map<User,String>map=new HashMap<User,String>();

for(int i=0;i<10000;i++){

User one=new User();

one.setUsername(i+" user");

map.put(one, i+"");

 

}

}

}

bubuko.com,布布扣
debug发现,添加9个user对象后数组table的entry通过hash后的到数组index为1,即数组第二个位置,每次都是一样的值,导致hash碰撞,所有的元素都通过链表形式加入到entry当中,并没有均匀分布到16个位置当中(默认使用的map构造方法),所以如果在查找的时候就是纯粹的线性查找(链表)。性能相当相当的低。
 
具体HashMap分析如下:
---------------------------------------------------------------------------------------------
public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable
{
    static final int DEFAULT_INITIAL_CAPACITY = 16;//初始容量
 
    static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量 2的30次方
    static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认加载因子
    transient Entry[] table;//条目(entry),大小跟容量大小一致(capacity)
    transient int size; //map所包含键-值对的数量 每增加一个k-v,根据k来判断是否自增长
    int threshold; //容量与加载因子的乘积,当map的size(entry个数)大于等于这个值时,会重新构造map-table的大小(为原来size的2倍大小,而此时threshold=size*loadFactor)
    final float loadFactor;//加载因子(人为指定,即在构造对象的时候指定合适的加载因子)
    transient int modCount;//当条目增加或者删除的时候modCount会自增长,这个主要用来在防止在非线程安全下迭代访问map的时候发生变化会抛出ConcurrentModificationException异常
 
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        //Map容量大小必须为2的幂次方,这里通过算法找出合适的容量大小,如您给定initialCapacity为17,它 //的二进制数为10001
 
       //当capacity16的时候(10000)已经左移了4次,16<17,所以会将capacity再左移1位,即 //32(100000),所以在创建对象使用
 
       //Map map=new HashMap(17,0.75),此时真正capacity=32,而不是你开始给的17.
 
       //想要创建17个容量大小的时候,实际上为您创建了32个容量大小的map
        int capacity = 1;
        while (capacity < initialCapacity)
            capacity <<= 1;
 
        this.loadFactor = loadFactor;
        threshold = (int)(capacity * loadFactor);//32*0.75=24, 当条目达到24的时候会重新构造map结构
        table = new Entry[capacity];//创建条目,大小为32
        init();
    }
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);//12(默认值)
        table = new Entry[DEFAULT_INITIAL_CAPACITY];//16个(默认值)
        init();
    }
    public HashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
        putAllForCreate(m);
    }
 
    void init() {
    }
 
    static int hash(int h) {
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }
 
   //h&(length-1)等价于h%length,取模运算
    static int indexFor(int h, int length) {
        return h & (length-1);
    }
 
    
    public int size() {
        return size;
    }
 
    public boolean isEmpty() {
        return size == 0;
    }
   //根据KEY找出V,如果key==null,会返回table[0](如果table[0]不为null,并且table[0]对应的key==null)
 
  //如果table[0]不为null,则检查table[0]的下一个节点(线性链表)是否满足上述情况,满足则返回value,否
 
  //则没有该key对应的value。
 
 //key不为null,则计算出key的hash,并根据hash得出在table中的位置,该位置不一定是真正Value对应的
 
 //位置,还要根据table位置的entry的key的hash以及key值进行比较,不相等则要该位置entry的下一个节点
 
 //是否满足,满足返回,否则返回null
    public V get(Object key) {
        if (key == null)
            return getForNullKey();
        int hash = hash(key.hashCode());
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                return e.value;
        }
        return null;
    }
   ......
   ......
//根据Key的hash值得出在table中的位置,该位置可能会被占用,如果占用entry的hash以及key值完全跟put的key相等,则对该entry进行update,如果不相等,则发生了碰撞,测试要判断当期entry是否有(next)下一个节点(entry),有则继续上一步判断,没有则新增一个entry节点到当前节点。
//这里可以hash不可能保证每次都不一样,所以我们使用的key的对象如果是自定义的对象,一定要重写hashcode方法保证每个对象的唯一性,这洋就能减少碰撞,如果hashcode一样,这洋在查找对象的时候等于是线性查找,算法复杂度近似O(n),并不能达到hashmap设计本来近似的O(1)
    public V put(K key, V value) {
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key.hashCode());
        int i = indexFor(hash, table.length);
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
 
        modCount++;
        addEntry(hash, key, value, i);
        return null;
    }
    ......
    ......
    //重构map的大小,及重新hash所有元素
 
 //newCapacity=table.length*2 (即原始table的大小乘以2),按照前面给定的值,这里是32*2=64
//重构后capacity=64,table的length=64,threshold=64*0.75=48,即当entry的size达到48的时候会再次重构
    void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }
 
        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable);
        table = newTable;
        threshold = (int)(newCapacity * loadFactor);
    }
//entry-table的复制,复制过程中重新计算hash,算出在新table中的位置
    void transfer(Entry[] newTable) {
        Entry[] src = table;
        int newCapacity = newTable.length;
        for (int j = 0; j < src.length; j++) {
            Entry<K,V> e = src[j];
            if (e != null) {
                src[j] = null;
                do {
                    Entry<K,V> next = e.next;
                    int i = indexFor(e.hash, newCapacity);
                    e.next = newTable[i];
                    newTable[i] = e;
                    e = next;
                } while (e != null);
            }
        }
    }
 
    public void putAll(Map<? extends K, ? extends V> m) {
        int numKeysToBeAdded = m.size();
        if (numKeysToBeAdded == 0)
            return;
 
        if (numKeysToBeAdded > threshold) {
            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
            if (targetCapacity > MAXIMUM_CAPACITY)
                targetCapacity = MAXIMUM_CAPACITY;
            int newCapacity = table.length;
            while (newCapacity < targetCapacity)
                newCapacity <<= 1;
            if (newCapacity > table.length)
                resize(newCapacity);
        }
 
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
            put(e.getKey(), e.getValue());
    }
 
   //移除Key对应的entry,如果table中存在因为碰撞问题导致的横向拉链(链表),要对链表进行操作,保证链表的连续性
    public V remove(Object key) {
        Entry<K,V> e = removeEntryForKey(key);
        return (e == null ? null : e.value);
    }
 
    final Entry<K,V> removeEntryForKey(Object key) {
        int hash = (key == null) ? 0 : hash(key.hashCode());
        int i = indexFor(hash, table.length);
        Entry<K,V> prev = table[i];
        Entry<K,V> e = prev;
 
        while (e != null) {
            Entry<K,V> next = e.next;
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k)))) {
                modCount++;
                size--;
                if (prev == e)
                    table[i] = next;
                else
                    prev.next = next;
                e.recordRemoval(this);
                return e;
            }
            prev = e;
            e = next;
        }
 
        return e;
    }
  .....
......
    public void clear() {
        modCount++;
        Entry[] tab = table;
        for (int i = 0; i < tab.length; i++)
            tab[i] = null;
        size = 0;
    }
 
    .......
    .......
    public Object clone() {
        HashMap<K,V> result = null;
        try {
            result = (HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
            // assert false;
        }
        result.table = new Entry[table.length];
        result.entrySet = null;
        result.modCount = 0;
        result.size = 0;
        result.init();
        result.putAllForCreate(this);
 
        return result;
    }
 
   //entry数据结构,真正Key和Value保存的地方
    static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next;
        final int hash;
 
       
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }
 
        public final K getKey() {
            return key;
        }
 
        public final V getValue() {
            return value;
        }
 
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
 
        public final boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object k1 = getKey();
            Object k2 = e.getKey();
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();
                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }
            return false;
        }
 
        public final int hashCode() {
            return (key==null   ? 0 : key.hashCode()) ^
                   (value==null ? 0 : value.hashCode());
        }
 
        public final String toString() {
            return getKey() + "=" + getValue();
        }
 
        void recordAccess(HashMap<K,V> m) {
        }
 
       
        void recordRemoval(HashMap<K,V> m) {
        }
    }
    void addEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<>(hash, key, value, e);
        if (size++ >= threshold)
            resize(2 * table.length);
    }
 
    void createEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<>(hash, key, value, e);
        size++;
    }
 
 
  ......
 
    ....
}
 
 

java.utils.HashMap数据结构分析(转),布布扣,bubuko.com

java.utils.HashMap数据结构分析(转)

原文:http://www.cnblogs.com/softidea/p/3878542.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!