题目:https://www.luogu.org/problemnew/show/P1937
首先我们对所有牛以\(a_{i}\)第一关键字排序,然后再贪心处理怎样才能使答案达到最优。
具体怎么贪呢?
我们从\(1->n\)扫一遍,假设我们扫到\(i\),在这一个空间上已经容纳了\(j\)头牛,我们把所有\(a_{k}=i\)的牛先扔进这一个空间,我们假设这个空间可以无限大,那么我们的队列里就存了可能超出空间的牛。
接着我们在考虑容量问题,这个时候我们队列里已经有\(r\)头牛了,如果\(r\leq c_{i}\)那么我们可以很和谐的往后跑,如果不是,那我们就要考虑把一部分牛宰掉\(qaq\)。
既然如此,我们的贪心思路已经很明确了,具体分为三步:
我们从\(1->n\)扫一遍,对于每个\(i\),我们把所有\(a_{i}\)进入队列,从这里开始占用空间。
然后我们开始考虑队列容量不够的问题,我们如果我们超出了容量,我们把所有\(b_{i}\)大的宰掉
接着释放空间,我们把队列中所有\(b_{i}=i\),即不占用空间了的请下去,统计答案。
显然,第二个步骤可以用大根堆实现。
那么第三个步骤呢?我们发现大根堆没法获取最小值。
具体代码实现很简单:
#include<bits/stdc++.h>
using namespace std;
int n,m,s[110000],t,sum[110000],ans = 0;
pair <int,int> a[110000];
priority_queue<int> q;
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1;i <= n;i ++) scanf("%d", &s[i]);
for(int i = 1;i <= m;i ++) scanf("%d%d", &a[i].first, &a[i].second);
sort(a + 1,a + m + 1);
a[m + 1].first = n + 1;//这一步是为了防止死循环
for(int i = 1;i <= n;i ++)
{
//分三步:
while(a[t + 1].first <= i) q.push(a[++ t].second),sum[a[t].second] ++;//进队
while(q.size() > s[i] + ans) sum[q.top()] --,q.pop();//宰牛
ans += sum[i];//统计答案,这一个答案也代表队列中有多少头牛是已经被释放了的
}
printf("%d\n", ans);
}
luogu1937 [USACO10MAR]仓配置Barn Allocation
原文:https://www.cnblogs.com/dwqhca/p/9979039.html