问题描述:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
解题思路:
这是一个典型的斐波那契数列,对于有n步的台阶:
1、如果先跳1步,还剩余n-1步,那么这就变成n-1步台阶跳法数目;
2、如果先跳2步,还剩余n-2步,这就变成n-2步台阶跳法数目。
所以经典的表达式:f(n) = f(n-1) + f(n-2)
class Solution { public: int climbStairs(int n) { /*f(n)=f(n-1)+f(n-2)*/ if(n==0||n==1) return 1; int stepOne=1,stepTwo=1; int result=0; for(int i=2;i<=n;i++){ result=stepOne+stepTwo; stepTwo=stepOne; stepOne=result; } return result; } };
Climbing Stairs,布布扣,bubuko.com
原文:http://blog.csdn.net/wan_hust/article/details/38307563