首页 > 其他 > 详细

POJ 1861 Kruskal

时间:2014-07-31 09:57:06      阅读:361      评论:0      收藏:0      [点我收藏+]
Network
Time Limit: 1000MS  Memory Limit: 30000K
Total Submissions: 13456  Accepted: 5209  Special Judge

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs).
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections.
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied.

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.
Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.
Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4

Source

Northeastern Europe 2001, Northern Subregion
 
/*******************************************

       author   :   Grant Yuan
       time     :   2014.7.31
       algorithm:   Kruskal
       source   :   POJ 1861
       notice   :   sample is error!

********************************************/

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<vector>
#define INF 0x3fffffff
#define MAX1 1003
#define MAX2 15003

using namespace std;

queue<int>q;
int par[MAX1];
struct edge{int u;int v;int cost;};
edge e[MAX2];
int n,m,ans;
int ml;
bool cmp(edge aa,edge bb)
{
    return aa.cost<bb.cost;
}

int findp(int aa)
{
    if(aa==par[aa]) return aa;
    else
        return par[aa]=findp(par[aa]);
}

void unite(int aa,int bb)
{
    int a1,b1;
    a1=findp(aa);
    b1=findp(bb);
    par[b1]=a1;
}

bool same(int aa,int bb)
{
    return findp(aa)==findp(bb);
}

int main()
{
   while(~scanf("%d%d",&n,&m)){
    ans=0;ml=0;
    while(!q.empty()) q.pop();
    for(int i=1;i<=n;i++)
    {
        par[i]=i;
    }
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].cost);
    }
    sort(e+1,e+m+1,cmp);
    for(int i=1;i<=m;i++)
    {
        if(!same(e[i].u,e[i].v)){
            unite(e[i].u,e[i].v);
            ans++;
            if(e[i].cost>ml)
                 ml=e[i].cost;
            q.push(i);
        }
    }
    int t;
    printf("%d\n",ml);
    printf("%d\n",ans);
    while(!q.empty()){
        t=q.front();
        q.pop();
        printf("%d %d\n",e[t].u,e[t].v);
    }
   }
    return 0;
}

POJ 1861 Kruskal,布布扣,bubuko.com

POJ 1861 Kruskal

原文:http://blog.csdn.net/yuanchang_best/article/details/38309537

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!