from sklearn.datasets import load_boston boston=load_boston() boston.keys()
print(boston.DESCR)
boston.data.shape
import pandas as pd pd.DataFrame(boston.data)
boston.feature_names
boston.target
import pandas as pd df=pd.DataFrame(boston.data) df
import matplotlib.pyplot as plt x=boston.data[:,12].reshape(-1,1) y=boston.target plt.figure(figsize=(10,6)) plt.scatter(x,y) from sklearn.linear_model import LinearRegression lineR=LinearRegression() lineR.fit(x,y) y_pred=lineR.predict(x) plt.plot(x,y_pred) print(lineR.coef_,lineR.intercept_)#斜率截距 plt.show()
x_poly
from sklearn.preprocessing import PolynomialFeatures poly=PolynomialFeatures(degree=2) x_poly=poly.fit_transform(x) lrp=LinearRegression() lrp.fit(x_poly,y) y_poly_pred=lrp.predict(x_poly) plt.scatter(x,y) plt.scatter(x,y_pred) plt.scatter(x,y_poly_pred) plt.show()
原文:https://www.cnblogs.com/GZCC-11-28/p/10075928.html