Problem Description
long long ans = 0;
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= n; j ++)
ans += a[i] / a[j];
给出n,a[1]...a[n],求ans
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= n; j ++)
ans += a[i] / a[j];
给出n,a[1]...a[n],求ans
Input
不超过5组数据,每组数据:
第一行n(1 <= n <= 10^5)
第二行n个数,a[1].. a[n] (1 <= a[i] <= 10^5)
Output
每组数据一行,ans
Sample Input
5 1 2 3 4 5
Sample Output
27
如此做法复杂度为:
O(nlogn)=n/1+n/2+n/3+n/4+n/5+n/6+n/7+…………+n/n;
1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <cmath> 5 #include <algorithm> 6 int a[100001],b[100001]; 7 long long ans,ans1; 8 int main() 9 { 10 int n,i,x,j,maxa; 11 while(~scanf("%d",&n)) 12 { 13 memset(a,0,sizeof(a)); 14 maxa=1; 15 for(i=0;i<n;i++)scanf("%d",&x),a[x]++,maxa=maxa>x?maxa:x; 16 b[0]=0; 17 for(i=1;i<=maxa;i++) 18 b[i]=b[i-1]+a[i]; 19 ans=0; 20 for(i=1;i<=maxa;i++) 21 { 22 if(a[i]) 23 { 24 ans1=0; 25 for(j=i-1;j<=maxa;j+=i) 26 { 27 ans1+=n-b[j]; 28 } 29 ans+=ans1*a[i]; 30 } 31 } 32 printf("%lld\n",ans); 33 } 34 }