import pandas as pd pd.DataFrame(boston.data)
from sklearn.datasets import load_boston boston=load_boston() boston.keys()
dict_keys([‘data‘, ‘target‘, ‘feature_names‘, ‘DESCR‘])
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.00632 | 18.0 | 2.31 | 0.0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3 | 396.90 | 4.98 |
1 | 0.02731 | 0.0 | 7.07 | 0.0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8 | 396.90 | 9.14 |
2 | 0.02729 | 0.0 | 7.07 | 0.0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8 | 392.83 | 4.03 |
3 | 0.03237 | 0.0 | 2.18 | 0.0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7 | 394.63 | 2.94 |
4 | 0.06905 | 0.0 | 2.18 | 0.0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7 | 396.90 | 5.33 |
5 | 0.02985 | 0.0 | 2.18 | 0.0 | 0.458 | 6.430 | 58.7 | 6.0622 | 3.0 | 222.0 | 18.7 | 394.12 | 5.21 |
6 | 0.08829 | 12.5 | 7.87 | 0.0 | 0.524 | 6.012 | 66.6 | 5.5605 | 5.0 | 311.0 | 15.2 | 395.60 | 12.43 |
7 | 0.14455 | 12.5 | 7.87 | 0.0 | 0.524 | 6.172 | 96.1 | 5.9505 | 5.0 | 311.0 | 15.2 | 396.90 | 19.15 |
8 | 0.21124 | 12.5 | 7.87 | 0.0 | 0.524 | 5.631 | 100.0 | 6.0821 | 5.0 | 311.0 | 15.2 | 386.63 | 29.93 |
9 | 0.17004 | 12.5 | 7.87 | 0.0 | 0.524 | 6.004 | 85.9 | 6.5921 | 5.0 | 311.0 | 15.2 | 386.71 | 17.10 |
10 | 0.22489 | 12.5 | 7.87 | 0.0 | 0.524 | 6.377 | 94.3 | 6.3467 | 5.0 | 311.0 | 15.2 | 392.52 | 20.45 |
11 | 0.11747 | 12.5 | 7.87 | 0.0 | 0.524 | 6.009 | 82.9 | 6.2267 | 5.0 | 311.0 | 15.2 | 396.90 | 13.27 |
12 | 0.09378 | 12.5 | 7.87 | 0.0 | 0.524 | 5.889 | 39.0 | 5.4509 | 5.0 | 311.0 | 15.2 | 390.50 | 15.71 |
13 | 0.62976 | 0.0 | 8.14 | 0.0 | 0.538 | 5.949 | 61.8 | 4.7075 | 4.0 | 307.0 | 21.0 | 396.90 | 8.26 |
14 | 0.63796 | 0.0 | 8.14 | 0.0 | 0.538 | 6.096 | 84.5 | 4.4619 | 4.0 | 307.0 | 21.0 | 380.02 | 10.26 |
15 | 0.62739 | 0.0 | 8.14 | 0.0 | 0.538 | 5.834 | 56.5 | 4.4986 | 4.0 | 307.0 | 21.0 | 395.62 | 8.47 |
16 | 1.05393 | 0.0 | 8.14 | 0.0 | 0.538 | 5.935 | 29.3 | 4.4986 | 4.0 | 307.0 | 21.0 | 386.85 | 6.58 |
17 | 0.78420 | 0.0 | 8.14 | 0.0 | 0.538 | 5.990 | 81.7 | 4.2579 | 4.0 | 307.0 | 21.0 | 386.75 | 14.67 |
18 | 0.80271 | 0.0 | 8.14 | 0.0 | 0.538 | 5.456 | 36.6 | 3.7965 | 4.0 | 307.0 | 21.0 | 288.99 | 11.69 |
19 | 0.72580 | 0.0 | 8.14 | 0.0 | 0.538 | 5.727 | 69.5 | 3.7965 | 4.0 | 307.0 | 21.0 | 390.95 | 11.28 |
20 | 1.25179 | 0.0 | 8.14 | 0.0 | 0.538 | 5.570 | 98.1 | 3.7979 | 4.0 | 307.0 | 21.0 | 376.57 | 21.02 |
21 | 0.85204 | 0.0 | 8.14 | 0.0 | 0.538 | 5.965 | 89.2 | 4.0123 | 4.0 | 307.0 | 21.0 | 392.53 | 13.83 |
22 | 1.23247 | 0.0 | 8.14 | 0.0 | 0.538 | 6.142 | 91.7 | 3.9769 | 4.0 | 307.0 | 21.0 | 396.90 | 18.72 |
23 | 0.98843 | 0.0 | 8.14 | 0.0 | 0.538 | 5.813 | 100.0 | 4.0952 | 4.0 | 307.0 | 21.0 | 394.54 | 19.88 |
24 | 0.75026 | 0.0 | 8.14 | 0.0 | 0.538 | 5.924 | 94.1 | 4.3996 | 4.0 | 307.0 | 21.0 | 394.33 | 16.30 |
25 | 0.84054 | 0.0 | 8.14 | 0.0 | 0.538 | 5.599 | 85.7 | 4.4546 | 4.0 | 307.0 | 21.0 | 303.42 | 16.51 |
26 | 0.67191 | 0.0 | 8.14 | 0.0 | 0.538 | 5.813 | 90.3 | 4.6820 | 4.0 | 307.0 | 21.0 | 376.88 | 14.81 |
27 | 0.95577 | 0.0 | 8.14 | 0.0 | 0.538 | 6.047 | 88.8 | 4.4534 | 4.0 | 307.0 | 21.0 | 306.38 | 17.28 |
28 | 0.77299 | 0.0 | 8.14 | 0.0 | 0.538 | 6.495 | 94.4 | 4.4547 | 4.0 | 307.0 | 21.0 | 387.94 | 12.80 |
29 | 1.00245 | 0.0 | 8.14 | 0.0 | 0.538 | 6.674 | 87.3 | 4.2390 | 4.0 | 307.0 | 21.0 | 380.23 | 11.98 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
476 | 4.87141 | 0.0 | 18.10 | 0.0 | 0.614 | 6.484 | 93.6 | 2.3053 | 24.0 | 666.0 | 20.2 | 396.21 | 18.68 |
477 | 15.02340 | 0.0 | 18.10 | 0.0 | 0.614 | 5.304 | 97.3 | 2.1007 | 24.0 | 666.0 | 20.2 | 349.48 | 24.91 |
478 | 10.23300 | 0.0 | 18.10 | 0.0 | 0.614 | 6.185 | 96.7 | 2.1705 | 24.0 | 666.0 | 20.2 | 379.70 | 18.03 |
479 | 14.33370 | 0.0 | 18.10 | 0.0 | 0.614 | 6.229 | 88.0 | 1.9512 | 24.0 | 666.0 | 20.2 | 383.32 | 13.11 |
480 | 5.82401 | 0.0 | 18.10 | 0.0 | 0.532 | 6.242 | 64.7 | 3.4242 | 24.0 | 666.0 | 20.2 | 396.90 | 10.74 |
481 | 5.70818 | 0.0 | 18.10 | 0.0 | 0.532 | 6.750 | 74.9 | 3.3317 | 24.0 | 666.0 | 20.2 | 393.07 | 7.74 |
482 | 5.73116 | 0.0 | 18.10 | 0.0 | 0.532 | 7.061 | 77.0 | 3.4106 | 24.0 | 666.0 | 20.2 | 395.28 | 7.01 |
483 | 2.81838 | 0.0 | 18.10 | 0.0 | 0.532 | 5.762 | 40.3 | 4.0983 | 24.0 | 666.0 | 20.2 | 392.92 | 10.42 |
484 | 2.37857 | 0.0 | 18.10 | 0.0 | 0.583 | 5.871 | 41.9 | 3.7240 | 24.0 | 666.0 | 20.2 | 370.73 | 13.34 |
485 | 3.67367 | 0.0 | 18.10 | 0.0 | 0.583 | 6.312 | 51.9 | 3.9917 | 24.0 | 666.0 | 20.2 | 388.62 | 10.58 |
486 | 5.69175 | 0.0 | 18.10 | 0.0 | 0.583 | 6.114 | 79.8 | 3.5459 | 24.0 | 666.0 | 20.2 | 392.68 | 14.98 |
487 | 4.83567 | 0.0 | 18.10 | 0.0 | 0.583 | 5.905 | 53.2 | 3.1523 | 24.0 | 666.0 | 20.2 | 388.22 | 11.45 |
488 | 0.15086 | 0.0 | 27.74 | 0.0 | 0.609 | 5.454 | 92.7 | 1.8209 | 4.0 | 711.0 | 20.1 | 395.09 | 18.06 |
489 | 0.18337 | 0.0 | 27.74 | 0.0 | 0.609 | 5.414 | 98.3 | 1.7554 | 4.0 | 711.0 | 20.1 | 344.05 | 23.97 |
490 | 0.20746 | 0.0 | 27.74 | 0.0 | 0.609 | 5.093 | 98.0 | 1.8226 | 4.0 | 711.0 | 20.1 | 318.43 | 29.68 |
491 | 0.10574 | 0.0 | 27.74 | 0.0 | 0.609 | 5.983 | 98.8 | 1.8681 | 4.0 | 711.0 | 20.1 | 390.11 | 18.07 |
492 | 0.11132 | 0.0 | 27.74 | 0.0 | 0.609 | 5.983 | 83.5 | 2.1099 | 4.0 | 711.0 | 20.1 | 396.90 | 13.35 |
493 | 0.17331 | 0.0 | 9.69 | 0.0 | 0.585 | 5.707 | 54.0 | 2.3817 | 6.0 | 391.0 | 19.2 | 396.90 | 12.01 |
494 | 0.27957 | 0.0 | 9.69 | 0.0 | 0.585 | 5.926 | 42.6 | 2.3817 | 6.0 | 391.0 | 19.2 | 396.90 | 13.59 |
495 | 0.17899 | 0.0 | 9.69 | 0.0 | 0.585 | 5.670 | 28.8 | 2.7986 | 6.0 | 391.0 | 19.2 | 393.29 | 17.60 |
496 | 0.28960 | 0.0 | 9.69 | 0.0 | 0.585 | 5.390 | 72.9 | 2.7986 | 6.0 | 391.0 | 19.2 | 396.90 | 21.14 |
497 | 0.26838 | 0.0 | 9.69 | 0.0 | 0.585 | 5.794 | 70.6 | 2.8927 | 6.0 | 391.0 | 19.2 | 396.90 | 14.10 |
498 | 0.23912 | 0.0 | 9.69 | 0.0 | 0.585 | 6.019 | 65.3 | 2.4091 | 6.0 | 391.0 | 19.2 | 396.90 | 12.92 |
499 | 0.17783 | 0.0 | 9.69 | 0.0 | 0.585 | 5.569 | 73.5 | 2.3999 | 6.0 | 391.0 | 19.2 | 395.77 | 15.10 |
500 | 0.22438 | 0.0 | 9.69 | 0.0 | 0.585 | 6.027 | 79.7 | 2.4982 | 6.0 | 391.0 | 19.2 | 396.90 | 14.33 |
501 | 0.06263 | 0.0 | 11.93 | 0.0 | 0.573 | 6.593 | 69.1 | 2.4786 | 1.0 | 273.0 | 21.0 | 391.99 | 9.67 |
502 | 0.04527 | 0.0 | 11.93 | 0.0 | 0.573 | 6.120 | 76.7 | 2.2875 | 1.0 | 273.0 | 21.0 | 396.90 | 9.08 |
503 | 0.06076 | 0.0 | 11.93 | 0.0 | 0.573 | 6.976 | 91.0 | 2.1675 | 1.0 | 273.0 | 21.0 | 396.90 | 5.64 |
504 | 0.10959 | 0.0 | 11.93 | 0.0 | 0.573 | 6.794 | 89.3 | 2.3889 | 1.0 | 273.0 | 21.0 | 393.45 | 6.48 |
505 | 0.04741 | 0.0 | 11.93 | 0.0 | 0.573 | 6.030 | 80.8 | 2.5050 | 1.0 | 273.0 | 21.0 | 396.90 | 7.88 |
506 rows × 13 columns
data=boston.data x=data[:,6] y=boston.target from sklearn.linear_model import LinearRegression LineR=LinearRegression() LineR.fit(x.reshape(-1,1),y) w=LineR.coef_ b=LineR.intercept_ print(w,b) import matplotlib.pyplot as pl pl.scatter(x,y) pl.plot(x,w*x+b,‘g‘) pl.show()
xx=data[:,6].reshape(-1,1) pl.scatter(xx,y) pl.show() from sklearn.preprocessing import PolynomialFeatures p=PolynomialFeatures() p.fit(xx) p.transform(xx)
原文:https://www.cnblogs.com/lbjdaxiong/p/10095547.html