转载:https://www.jianshu.com/p/dcec3f07d3b5
长短时记忆网络(Long Short Term Memory Network, LSTM),是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题。
原始 RNN 的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。再增加一个状态,即c,让它来保存长期的状态,称为单元状态(cell state)。
把上图按照时间维度展开:
在 t 时刻,LSTM 的输入有三个:当前时刻网络的输入值 x_t
、上一时刻 LSTM 的输出值 h_t-1
、以及上一时刻的单元状态 c_t-1
;LSTM 的输出有两个:当前时刻 LSTM 输出值 h_t
、和当前时刻的单元状态 c_t
.
方法是:使用三个控制开关
第一个开关,负责控制继续保存长期状态c;
第二个开关,负责控制把即时状态输入到长期状态c;
第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。
方法:用 门(gate)
定义:gate 实际上就是一层全连接层,输入是一个向量,输出是一个 0到1 之间的实数向量。
公式为:
方法:用门的输出向量按元素乘以我们需要控制的那个向量
原理:门的输出是 0到1 之间的实数向量,当门输出为 0 时,任何向量与之相乘都会得到 0 向量,这就相当于什么都不能通过;输出为 1 时,任何向量与之相乘都不会有任何改变,这就相当于什么都可以通过。
一共有 6 个公式
遗忘门(forget gate)
它决定了上一时刻的单元状态 c_t-1
有多少保留到当前时刻 c_t
输入门(input gate)
它决定了当前时刻网络的输入 x_t
有多少保存到单元状态 c_t
输出门(output gate)
控制单元状态 c_t
有多少输出到 LSTM 的当前输出值 h_t
遗忘门的计算公式中:
W_f
是遗忘门的权重矩阵,[h_t-1, x_t]
表示把两个向量连接成一个更长的向量,b_f
是遗忘门的偏置项,σ
是 sigmoid 函数。
根据上一次的输出和本次输入来计算当前输入的单元状态:
当前时刻的单元状态 c_t
的计算:由上一次的单元状态 c_t-1
按元素乘以遗忘门 f_t
,再用当前输入的单元状态 c_t
按元素乘以输入门 i_t
,再将两个积加和:这样,就可以把当前的记忆 c_t
和长期的记忆 c_t-1
组合在一起,形成了新的单元状态 c_t
。由于遗忘门的控制,它可以保存很久很久之前的信息,由于输入门的控制,它又可以避免当前无关紧要的内容进入记忆。
原文:https://www.cnblogs.com/wzdLY/p/10097113.html