首页 > 其他 > 详细

min-max容斥 hdu 4336 && [BZOJ4036] 按位或

时间:2018-12-14 20:51:32      阅读:142      评论:0      收藏:0      [点我收藏+]

题解:

之前听说过这个东西但没有学

令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素

$$max(S)=\sum{T \ in S} {-1}^{|T|+1} min(T) $$

$$min(S)=\sum{T \ in S} {-1}^{|T|+1} max(T) $$

然后再在外面套个期望

$$E(max(S))=\sum{T \ in S} {-1}^{|T|+1} E(min(T))$$

hdu 4336

定义大小比较为出现时间早晚

$E(max(S))$就表示最后一个元素出现的时间期望,$E(min(S))$表示第一个元素出现的时间期望

现在我们要求的就是$max($全集$)$

代入上面的$max-min$容斥

而$min(S)=\frac{1}{\sum{i \ in S} pi}$

[BZOJ4036] 按位或

 

min-max容斥 hdu 4336 && [BZOJ4036] 按位或

原文:https://www.cnblogs.com/yinwuxiao/p/10120351.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!