首页 > 其他 > 详细

「拉格朗日插值」学习笔记

时间:2018-12-16 10:04:00      阅读:172      评论:0      收藏:0      [点我收藏+]

给出$n$个点,求出这$n$个点对应的多项式中代入$k$的结果。

很显然这个多项式是唯一确定的,因为我们待定系数,然后得到一个$n$元一次方程。解完就得到了系数表达式。

但是我们不需要知道各项系数,只需要知道代入$k$的结果就好了。因此:$$\sum\limits_{0 \leq i < n}y_i \prod\limits_{j \neq i}\dfrac{x-x_j}{x_i-x_j}$$这个多项式的意义非常显然,当$x$取到给定某一个$x_m$时,除了第$m$项,其他的项中分子一定会有一个$x-x_m$,因此消去了(等于0),只剩下了$y_m\prod\limits_{j \neq m}\dfrac{x-x_j}{x_m-x_j}$。此时将$x_m$代入,分子分母相等,故为1。所以结果就是$y_m$。因此我们确保了将给定的$n$个点代入无误,所以多项式无误。

「拉格朗日插值」学习笔记

原文:https://www.cnblogs.com/qixingzhi/p/10125670.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!