有一个比较容易出错的点:反转求最长公共子序列,这是错误的想法
1 class Solution { 2 public: 3 string longestPalindrome(string s) { 4 int n = s.length(); 5 int longestS = 0; 6 int maxlen = 1; 7 bool table[1000][1000] = {false}; 8 int i,j,len; 9 for(i = 0 ; i < n ; ++i) 10 { 11 table[i][i] = true; 12 } 13 14 for(i = 0 ; i < n-1; ++i) 15 { 16 if(s[i] == s[i+1]) 17 { 18 table[i][i+1] = true; 19 longestS = i; 20 maxlen = 2; 21 } 22 } 23 for(len = 3 ; len <= n ; ++len) 24 { 25 for(i = 0 ; i < n-len+1 ; ++i) 26 { 27 j = i+len-1; 28 if(s[i]==s[j] && table[i+1][j-1]) 29 { 30 table[i][j] = true; 31 longestS = i; 32 maxlen = len; 33 } 34 } 35 } 36 return s.substr(longestS,maxlen); 37 } 38 };
可以优化的,优化为O(1)的空间。就是考虑2*n-1个位置为中间点,然后开始求。
LeetCode--Longest Palindromic Substring,布布扣,bubuko.com
LeetCode--Longest Palindromic Substring
原文:http://www.cnblogs.com/cane/p/3884799.html