首页 > 其他 > 详细

CS224n: Natural Language Processing with Deep Learning 学习笔记

时间:2018-12-17 12:53:44      阅读:127      评论:0      收藏:0      [点我收藏+]

技术分享图片

Lecture 1: Introduction

NLP:Natural language processing

常见自然语言项目:(又一次面试问过)

  • 微软 Cortana
  • 苹果 Siri (消费级技术)
  • 亚马逊 Alexa
  • 小米 小爱
  • 百度 小度
  • 天猫 天猫精灵

人类语言的特点:

  • 明确的指向性
  • 语言是符号、符号不基于任何逻辑和AI
  • 具有连续的载体 (以唠嗑就根本停不下来)

2015年之前的机器学习都是人在做大量的数据分析(比如:手动特征工程),而机器只是在做数值的优化(事实上电脑很适合做数值优化,人类不适合)。
这并不是我们所期望的机器学习。
深度学习(Deeplearning)是表征学习(Representation Learning)的一个重要分支。
表征学习的理念是,我们可以向电脑提供来自世界的原始信号,无论是视觉信息还是语言信息,然后 电脑可以自动得出好的中介表征 来很好的完成任务,从某种意义上来说,它是自己定义特征。
深度学习不只是基于神经网络,也可以是概率模型以及其他方法运用于深度架构中。(概率图模型)
利用深度学习学习词向量,高维空间成为了非常棒的语义空间。具有相同含义的词聚集成块,向量空间存在方向,它会透露关于成分和意义的信息。
然而人类不擅长解读高维空间的信息,人类跟习惯于2维度和3维度的信息表示。

CS224n: Natural Language Processing with Deep Learning 学习笔记

原文:https://www.cnblogs.com/JCcodeblgos/p/10130330.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!