题目传送门:https://agc008.contest.atcoder.jp/tasks/agc008_d
题目大意:
给你一个长度为\(N\)的序列\(A\),请你构造一个长度为\(N^2\)的序列\(a\),满足\(1\sim N\)都出现了\(N\)次,且对于任意\(i\),满足\(i\)在\(a\)中第\(i\)次出现的位置为\(A_i\)
首先我们知道对于一个数\(i\),在\([1,A_i)\)中出现了\(i-1\)次,在\((A_i,N^2]\)中出现了\(N-i\)次(显然)
然后考虑位置\(i\)应该填什么数,肯定是给需求最大的对吧?也就是按\(A_i\)排序后最靠前的,且出现次数还没达到限制的数(限制即为\(i\)在\(A_i\)前只能出现\(i-1\)次)。然后我们正反都做一遍,最后判断数列是否合法即可
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=5e2;
int cnt[N+10],A[N*N+10],C[N+10],B[N+10];
int pos[N+10][N+10];
bool cmp(int x,int y){return B[x]<B[y];}
bool check(int n){
for (int i=1;i<=n*n;i++) pos[A[i]][++pos[A[i]][0]]=i;
for (int i=1;i<=n;i++) if (pos[i][i]!=B[i]) return 0;
return 1;
}
int main(){
int n=read();
for (int i=1;i<=n;i++) C[i]=A[B[i]=read()]=i;
sort(C+1,C+1+n,cmp);
for (int i=1;i<=n;i++) cnt[i]=i-1;
for (int i=1;i<=n*n;i++){
if (A[i]) continue;
for (int j=1;j<=n;j++){
if (cnt[C[j]]){
cnt[A[i]=C[j]]--;
break;
}
}
}
for (int i=1;i<=n;i++) cnt[i]=n-i;
for (int i=n*n;i>=1;i--){
if (A[i]) continue;
for (int j=n;j>=1;j--){
if (cnt[C[j]]){
cnt[A[i]=C[j]]--;
break;
}
}
}
if (!check(n)){
printf("No\n");
return 0;
}
printf("Yes\n");
for (int i=1;i<=n*n;i++) printf("%d",A[i]),putchar(i==n*n?'\n':' ');
return 0;
}
AtCoder Grand Contest 008 D - K-th K
原文:https://www.cnblogs.com/Wolfycz/p/10137916.html